【題目】某區(qū)對(duì)即將參加中考的5000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.

請(qǐng)根據(jù)圖表信息回答下列問題:

視力

頻數(shù)(人)

頻率

4.0≤x<4.3

20

0.1

4.3≤x<4.6

40

0.2

4.6≤x<4.9

70

0.35

4.9≤x<5.2

a

0.3

5.2≤x<5.5

10

b

(1)本次調(diào)查的樣本為________,樣本容量為_______;

(2)在頻數(shù)分布表中,a=______,b=______,并將頻數(shù)分布直方圖補(bǔ)充完整;

(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?

【答案】 200名初中畢業(yè)生的視力情況 200 60 0.05

【解析】

(1)用第1組的頻數(shù)除以它所占的百分比即可得到樣本容量,然后根據(jù)樣本的定義寫出樣本;

(2)用樣本容量乘以0.3得到a的值,用10除以10得到b的值;

(3)用樣本值后面三組的頻率和乘以5000可估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生數(shù).

(1)20÷0.1=200(人),

所以本次調(diào)查的樣本為200名初中畢業(yè)生的視力情況,樣本容量為200;

(2)a=200×0.3=60,b=10÷200=0.05;

如圖,

故答案為 200名初中畢業(yè)生的視力情況,200;60,0.05;

(3)5000×(0.35+0.3+0.05)=3500(人),

估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生有3500人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB,請(qǐng)按要求完成下列問題.

1)用直尺和圓規(guī)作圖,延長(zhǎng)線段AB到點(diǎn)C,使BCAB;反向延長(zhǎng)線段AB到點(diǎn)D,使ADAC;

2)如果AB2cm

①求CD的長(zhǎng)度;

②設(shè)點(diǎn)P是線段BD的中點(diǎn),求線段CP的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝元旦,光明學(xué)校統(tǒng)一組織合唱比賽,七、八年級(jí)共92人(其中七年級(jí)的人數(shù)多于八年級(jí)的人數(shù),且七年級(jí)的人數(shù)不足90人)準(zhǔn)備統(tǒng)一購(gòu)買服裝參加比賽.下面是某服裝廠給出服裝的價(jià)格表:

購(gòu)買服裝的套數(shù)

1套至45

46套至90

91套以上(含91套)

每套服裝的價(jià)格

60

50

40

購(gòu)買服裝的套數(shù)

1套至45

46套至90

91套以上(含91套)

每套服裝的價(jià)格

60

50

40

1)如果兩個(gè)年級(jí)分別單獨(dú)購(gòu)買服裝一共應(yīng)付5000元,求七、八年級(jí)各有多少學(xué)生參加合唱比賽;

2)如果七年級(jí)參加合唱比賽的學(xué)生中,有10名同學(xué)抽調(diào)去參加繪畫比賽,不能參加合唱比賽,請(qǐng)你為兩個(gè)年級(jí)設(shè)計(jì)一種最省錢的購(gòu)買服裝方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上,點(diǎn)A和點(diǎn)B分別位于原點(diǎn)O兩側(cè),AB=14,點(diǎn)A對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b.

(1) b=-4,則a的值為__________.

(2) OA3OB,求a的值.

(3) 點(diǎn)C為數(shù)軸上一點(diǎn),對(duì)應(yīng)的數(shù)為c.若OAC的中點(diǎn),OB3BC,直接寫出所有滿足條件的c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,CE∥ADCE=AD.

1)求證:四邊形ADCE是矩形;

2)若△ABC是邊長(zhǎng)為的等邊三角形,AC,DE相交于點(diǎn)O,在CE上截取CF=CO,連接OF,求線段FC的長(zhǎng)及四邊形AOFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,∠ABC=∠ACBD為射線CB上一點(diǎn)(不與C、B重合),點(diǎn)E為射線CA上一點(diǎn),∠ADE=∠AED.設(shè)∠BAD=α,∠CDE=β

1)如圖(1),

∠BAC=40°,∠DAE=30°,則α=   ,β=   

寫出αβ的數(shù)量關(guān)系,并說明理由;

2)如圖(2),當(dāng)D點(diǎn)在BC邊上,E點(diǎn)在CA的延長(zhǎng)線上時(shí),其它條件不變,寫出αβ的數(shù)量關(guān)系,并說明理由.

3)如圖(3),DCB的延長(zhǎng)線上,根據(jù)已知補(bǔ)全圖形,并直接寫出αβ的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,∠AOC48°,∠DOE∶∠BOE53OF平分∠AOE

(1)求∠BOE的度數(shù);

(2)求∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探究證明】

(1)在矩形ABCD,EFGH,EF分別交AB,CD于點(diǎn)E,F(xiàn),GH分別交AD,BC于點(diǎn)G,H.,求證:;

【結(jié)論應(yīng)用】

(2)如圖2,在滿足(1)的條件下,AMBN,點(diǎn)M,N分別在邊BC,CD上.若,;

【聯(lián)系拓展】

(3)如圖3,四邊形ABCD,ABC=90°,AB=AD=10,BC=CD=5,AMDN,點(diǎn)M,N分別在邊BC,AB,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案