(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時從B點(diǎn)出發(fā),沿射線BC向右勻速移動.已知F點(diǎn)移動速度是E點(diǎn)移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動距離為x(x>0).
⑴△EFG的邊長是____(用含有x的代數(shù)式表示),當(dāng)x=2時,點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時,y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時,y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.
(1)x,D點(diǎn)
(2)①當(dāng)0<x≤2時,△EFG在梯形ABCD內(nèi)部,所以y=x2
②分兩種情況:Ⅰ.當(dāng)2<x<3時,此時 y=x2-(3x-6)2=
Ⅱ.當(dāng)3≤x≤6時,y=(6-x)2=
(3)當(dāng)x=時,ymax=
解析:(滿分13分)
解:⑴;………………3分
⑵ ①當(dāng)0<x≤2時,△EFG在梯形ABCD內(nèi)部,所以y=x2;………………6分
②分兩種情況:
Ⅰ.當(dāng)2<x<3時,如圖1,點(diǎn)E、點(diǎn)F在線段BC上,
△EFG與梯形ABCD重疊部分為四邊形EFNM,
∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
由于在Rt△NMG中,∠G=60°,
所以,此時 y=x2-(3x-6)2=.………………9分
Ⅱ.當(dāng)3≤x≤6時,如圖2,
點(diǎn)E在線段BC上,點(diǎn)F在射線CH上,
△EFG與梯形ABCD重疊部分為△ECP,
∵EC=6-x,
∴y=(6-x)2=.………………11分
⑶當(dāng)0<x≤2時,∵y=x2在x>0時,y隨x增大而增大,
∴x=2時,y最大=;
當(dāng)2<x<3時,∵y=在x=時,y最大=;
當(dāng)3≤x≤6時,∵y=在x<6時,y隨x增大而減小,
∴x=3時,y最大=.………………12分
綜上所述:當(dāng)x=時,y最大=.………………13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.
⑴ 求證:△AMB≌△ENB;
⑵ ①當(dāng)M點(diǎn)在何處時,AM+CM的值最;
②當(dāng)M點(diǎn)在何處時,AM+BM+CM的值最小,并說明理由;
⑶ 當(dāng)AM+BM+CM的最小值為時,求正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時從B點(diǎn)出發(fā),沿射線BC向右勻速移動.已知F點(diǎn)移動速度是E點(diǎn)移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動距離為x(x>0).
⑴△EFG的邊長是____(用含有x的代數(shù)式表示),當(dāng)x=2時,點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時,y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時,y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時從B點(diǎn)出發(fā),沿射線BC向右勻速移動.已知F點(diǎn)移動速度是E點(diǎn)移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動距離為x(x>0).
⑴△EFG的邊長是____(用含有x的代數(shù)式表示),當(dāng)x=2時,點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時,y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時,y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.
⑴ 求證:△AMB≌△ENB;
⑵ ①當(dāng)M點(diǎn)在何處時,AM+CM的值最小;
②當(dāng)M點(diǎn)在何處時,AM+BM+CM的值最小,并說明理由;
⑶ 當(dāng)AM+BM+CM的最小值為時,求正方形的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com