(2012•常州)平面上有兩條直線AB、CD相交于點O,且∠BOD=150°(如圖),現(xiàn)按如下要求規(guī)定此平面上點的“距離坐標(biāo)”:
(1)點O的“距離坐標(biāo)”為(0,0);
(2)在直線CD上,且到直線AB的距離為p(p>0)的點的“距離坐標(biāo)”為(p,0);在直線AB上,且到直線CD的距離為q(q>0)的點的“距離坐標(biāo)”為(0,q);
(3)到直線AB、CD的距離分別為p,q(p>0,q>0)的點的“距離坐標(biāo)”為(p,q).
設(shè)M為此平面上的點,其“距離坐標(biāo)”為(m,n),根據(jù)上述對點的“距離坐標(biāo)”的規(guī)定,解決下列問題:
(1)畫出圖形(保留畫圖痕跡):
①滿足m=1,且n=0的點M的集合;
②滿足m=n的點M的集合;
(2)若點M在過點O且與直線CD垂直的直線l上,求m與n所滿足的關(guān)系式.(說明:圖中OI長為一個單位長)
分析:(1)①以O(shè)為圓心,以2為半徑作圓,交CD于兩點,則此兩點為所求;②分別作∠BOC和∠BOD的角平分線并且反向延長,即可求出答案;
(2)過M作MN⊥AB于N,根據(jù)已知得出OM=n,MN=m,求出∠NOM=60°,根據(jù)銳角三角函數(shù)得出sin60°=
MN
OM
=
m
n
,求出即可.
解答:解:(1)①如圖所示:

點M1和M2為所求;

②如圖所示:

直線MN和直線EF為所求;


(2)如圖:

過M作MN⊥AB于N,
∵M(jìn)的“距離坐標(biāo)”為(m,n),
∴OM=n,MN=m,
∵∠BOD=150°,直線l⊥CD,
∴∠MON=150°-90°=60°,
在Rt△MON中,sin60°=
MN
OM
=
m
n

即m與n所滿足的關(guān)系式是:m=
3
2
n.
點評:本題考查了銳角三角函數(shù)值,角平分線性質(zhì),含30度角的直角三角形的應(yīng)用,主要考查學(xué)生的動手操作能力和計算能力,注意:角平分線上的點到角兩邊的距離相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如圖,小明想用所學(xué)的知識來測量湖心島上的迎賓槐與湖岸上涼亭間的距離,他先在湖岸上的涼亭A處測得湖心島上的迎賓槐C處位于北偏東65°方向,然后,他從涼亭A處沿湖岸向東方向走了100米到B處,測得湖心島上的迎賓槐C處位于北偏東45°方向(點A、B、C在同一平面上),請你利用小明測得的相關(guān)數(shù)據(jù),求湖心島上的迎賓槐C處與湖岸上的涼亭A處之間的距離(結(jié)果精確到1米).(參考數(shù)據(jù)sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西湖區(qū)一模)坐標(biāo)平面上,若移動二次函數(shù)y=-(x-2012)(x-2011)+2的圖象,使其與x軸交于兩點,且此兩點的距離為1個單位,則移動方式可為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•浙江一模)如圖1,在平面上,給定了半徑為r的⊙O,對于任意點P,在射線OP上取一點P′,使得OP•OP′=r2,這種把點P變?yōu)辄cP′的變換叫做反演變換,點P與點P′叫做互為反演點,⊙O稱為基圓.
(1)如圖2,⊙O內(nèi)有不同的兩點A、B,它們的反演點分別是A′、B′,則與∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如圖3,⊙O內(nèi)有一點M,請用尺規(guī)作圖畫出點M的反演點M′;(保留畫圖痕跡,不必寫畫法).
(3)如果一個圖形上各點經(jīng)過反演變換得到的反演點組成另一個圖形,那么這兩個圖形叫做互為反演圖形.已知基圓O的半徑為r,另一個半徑為r1的⊙C,作射線OC交⊙C于點A、B,點A、B關(guān)于⊙O的反演點分別是A′、B′,點M為⊙C上另一點,關(guān)于⊙O的反演點為M′.求證:∠A′M′B′=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市綠城育華中考數(shù)學(xué)模擬試卷(4月份)(解析版) 題型:選擇題

坐標(biāo)平面上,若移動二次函數(shù)y=-(x-2012)(x-2011)+2的圖象,使其與x軸交于兩點,且此兩點的距離為1個單位,則移動方式可為( )
A.向上移動2個單位
B.向下移動2個單位
C.向上移動1個單位
D.向下移動1個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市西湖區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

坐標(biāo)平面上,若移動二次函數(shù)y=-(x-2012)(x-2011)+2的圖象,使其與x軸交于兩點,且此兩點的距離為1個單位,則移動方式可為( )
A.向上移動2個單位
B.向下移動2個單位
C.向上移動1個單位
D.向下移動1個單位

查看答案和解析>>

同步練習(xí)冊答案