【題目】當(dāng)a=時(shí),|1﹣a|+2會有最小值,且最小值是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時(shí),△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請直接判定此時(shí)四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題的是( )
A.一條直線有且只有一條垂線B.同位角相等,兩直線平行
C.直角的補(bǔ)角是直角D.兩直線平行,同旁內(nèi)角互補(bǔ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點(diǎn),點(diǎn)A在x正半軸上,OA=cm,點(diǎn)B在y軸的正半軸上,OB=12cm,動點(diǎn)P從點(diǎn)O開始沿OA以cm/s的速度向點(diǎn)A移動,動點(diǎn)Q從點(diǎn)A開始沿AB以4cm/s的速度向點(diǎn)B移動,動點(diǎn)R從點(diǎn)B開始沿BO以2cm/s的速度向點(diǎn)O移動.如果P、Q、R分別從O、A、B同時(shí)移動,移動時(shí)間為t(0<t<6)s.
(1)求∠OAB的度數(shù).
(2)以O(shè)B為直徑的⊙O′與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O′相切?
(3)是否存在△RPQ為等腰三角形?若存在,請直接寫出出的t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為∠ABC的平分線BD上一點(diǎn),連接AD,過點(diǎn)D作EF∥BC交AB于點(diǎn)E,交AC于點(diǎn)F.
(1)如圖1,若AD⊥BD于點(diǎn)D,∠BEF=130°,求∠BAD的度數(shù);
(2)如圖2,若∠ABC=α,∠BDA=β,求∠FAD+∠C的度數(shù)(用含α和β的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要調(diào)查某校學(xué)生周日的睡眠時(shí)間,下列選取調(diào)查對象中最合適的是( )
A.隨機(jī)選取該校一個(gè)班級的學(xué)生B.隨機(jī)選取該校100名男生
C.隨機(jī)選取該校一個(gè)年級的學(xué)生D.在該校各年級中隨機(jī)選取100名學(xué)生
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CA=8,CB=6,動點(diǎn)P從C出發(fā)沿CA方向,以每秒1個(gè)單位長度的速度向A點(diǎn)勻速運(yùn)動,到達(dá)A點(diǎn)后立即以原來速度沿AC返回;同時(shí)動點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長度向點(diǎn)B勻速運(yùn)動,當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)P、Q運(yùn)動的時(shí)間為t秒(t>0).
(1)當(dāng)t為何值時(shí),PQ∥CB?
(2)在點(diǎn)P從C向A運(yùn)動的過程中,在CB上是否存在點(diǎn)E使△CEP與△PQA全等?若存在,求出CE的長;若不存在,請說明理由;
(3)伴隨著P、Q兩點(diǎn)的運(yùn)動,線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB﹣BC﹣CP于點(diǎn)F.當(dāng)DF經(jīng)過點(diǎn)C時(shí),求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com