【題目】九(1)班同學(xué)為了解某小區(qū)家庭月均用水情況(單位:噸),隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理:

月均用水量(噸)

頻數(shù)(戶)

頻率

6

0.12

0.24

16

0.32

10

0.20

4

25

2

0.04

請解答以下問題:

1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

2)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均有水量超過20噸的家庭大約有多少戶?

【答案】1)頻數(shù)分布表和頻數(shù)分布直方圖見詳解;(2120戶.

【解析】

1)根據(jù)表中的數(shù)據(jù)可以將頻數(shù)分布表補充完整,根據(jù)頻數(shù)分布表中的數(shù)據(jù)可以將頻數(shù)分布直方圖補充完整.

2)根據(jù)頻數(shù)分布表中的數(shù)據(jù)可以計算出該小區(qū)月均有水量超過20噸的家庭大約有多少戶.

解:(1)樣本容量為6÷0.12=50,

50×0.24=12

4÷50=0.08

月均用水量(噸)

頻數(shù)(戶)

頻率

6

0.12

12

0.24

16

0.32

10

0.20

4

0.08

25

2

0.04

由頻數(shù)分布表知,5x1012人,10x1516

21000×(0.08+0.04)=120(戶)

答:該小區(qū)月均有水量超過20噸的家庭大約有120戶.

故答案為120戶.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川廣安10分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).

(1)求此拋物線的解析式.

(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PDAB于點D.

動點P在什么位置時,PDE的周長最大,求出此時P點的坐標(biāo);

連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點的坐標(biāo).(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形中,,連接,以為直徑作半圓于點,

1)過點DOB的垂線,垂足為E,求證:DE與半圓C相切;

2)若,,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.

(1)求一次函數(shù)的表達式;

(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市紅十字預(yù)計在2019年兒童節(jié)前為郊區(qū)某小學(xué)發(fā)放學(xué)習(xí)用品,聯(lián)系某工廠加工學(xué)習(xí)用品.機器每小時加工產(chǎn)品的數(shù)量比手工每小時加工產(chǎn)品的數(shù)量的2倍多9件,若加工1800件這樣的產(chǎn)品,機器加工所用的時間是手工加工所用時間的倍.

1)求手工每小時加工產(chǎn)品的數(shù)量;

2)經(jīng)過調(diào)查該小學(xué)的小學(xué)生的總數(shù)不超過1332名,每名小學(xué)生分發(fā)兩個學(xué)習(xí)用品,工廠領(lǐng)導(dǎo)打算在兩天內(nèi)(48小時)完成任務(wù),打算以機器加工為主,同時人工也參與加工(人工與機器加工不能同時進行),為了保證按時完成加工任務(wù),人工至少要加工多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖①,在中,,,則的周長為_________

問題探究

2)如圖②,四邊形中,,,求四邊形的面積;

問題解決.

3)如圖③,某農(nóng)業(yè)技術(shù)中心為新品種試驗而修建了形狀為四邊形的試驗田,、、是田間小路,點上,點上,,,其中道路的長度為100米,計劃在四個三角形區(qū)域內(nèi)種植不同的農(nóng)作物,為及時了解農(nóng)作物的生長情況,中心決定在點處各架設(shè)監(jiān)控器一臺,處的監(jiān)控器的觀察范圍為處的監(jiān)控器的觀察范圍為,經(jīng)測量,,,請?zhí)骄克倪呅?/span>區(qū)域的面積是否存在最小值,若存在,請求出它的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線yx6x軸、y軸分別交于A、B兩點,點P是以C0,3)為圓心,3為半徑的圓上一動點,連結(jié)PA、PB

1)求圓心C到直線AB的距離;

2)求△PAB面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸有兩個交點,則下列說法正確的有:_________________(填序號)

①該二次函數(shù)的圖象一定過定點;

②若該函數(shù)圖象開口向下,則的取值范圍為:;

③當(dāng)時,的最大值為;

④當(dāng)且該函數(shù)圖象與軸兩交點的橫坐標(biāo)滿足時,的取值范圍為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算:||+(﹣12019+2sin30°+0

2)解方程:

查看答案和解析>>

同步練習(xí)冊答案