【題目】如圖,BDO的直徑,ACO的弦,ABACADBC于點(diǎn)E,AE2ED4,延長(zhǎng)DB到點(diǎn)F,使得BFBO,連接FA.則下列結(jié)論中不正確的是( 。

A. ABE∽△ADBB. ABC=∠ADB

C. AB3D. 直線FAO相切

【答案】C

【解析】

ABAC,得出,由圓周角定理得出∠ABC=∠ADB,由公共角∠BAE=∠DAB,得出ABE∽△ADB,選項(xiàng)A、B正確;由相似三角形的性質(zhì)得出ABADAEAB,求出AB,選項(xiàng)C錯(cuò)誤;連接OA,由圓周角定理得出∠BAD90°,由勾股定理得出BD,得出OAOBAB,證出∠OAF90°,∴直線FA與⊙O相切,選項(xiàng)D正確;即可得出結(jié)論.

ABAC,

,

∴∠ABC=∠ADB,

∵∠BAE=∠DAB,

∴△ABE∽△ADB,選項(xiàng)A、B正確;

ABADAEAB,

AB2AE×AD22+4)=12

AB,選項(xiàng)C錯(cuò)誤;

連接OA,如圖所示:

BD為⊙O的直徑,

∴∠BAD90°

BD,

OAOBAB

BFBO,

ABOBBF,

∴∠OAF90°

∴直線FA與⊙O相切,選項(xiàng)D正確;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點(diǎn)P在射線CB上運(yùn)動(dòng)(不包含點(diǎn)B、C),連接DP,交AB于點(diǎn)M,作BEDP于點(diǎn)E,連接AE,作∠FAD=EAB,FADP于點(diǎn)F

(1)如圖a,當(dāng)點(diǎn)PCB的延長(zhǎng)線上時(shí),

①求證:DF=BE;

②請(qǐng)判斷DEBE、AE之間的數(shù)量關(guān)系并證明;

(2)如圖b,當(dāng)點(diǎn)P在線段BC上時(shí),DE、BEAE之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出答案,不必證明;

(3)如果將已知中的正方形ABCD換成矩形ABCD,且ADAB=1,其他條件不變,當(dāng)點(diǎn)P在射線CB上時(shí),DE、BEAE之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出答案,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑作O,過點(diǎn)AO的切線AC,連結(jié)BC,交O于點(diǎn)D,點(diǎn)EBC邊的中點(diǎn),連結(jié)AE

(1)求證:∠AEB=2∠C

(2)若AB=6,,求DE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在日常生活中我們經(jīng)常會(huì)使用到訂書機(jī),如圖MN是裝訂機(jī)的底座,AB是裝訂機(jī)的托板AB始終與底座平行,連接桿DED點(diǎn)固定,點(diǎn)EAB處滑動(dòng),壓柄BC繞著轉(zhuǎn)軸B旋轉(zhuǎn).已知連接桿BC的長(zhǎng)度為20cm,BD=cm,壓柄與托板的長(zhǎng)度相等.

1)當(dāng)托板與壓柄的夾角∠ABC=30°時(shí),如圖①點(diǎn)EA點(diǎn)滑動(dòng)了2cm,求連接桿DE的長(zhǎng)度.

2)當(dāng)壓柄BC從(1)中的位置旋轉(zhuǎn)到與底座垂直,如圖②.求這個(gè)過程中,點(diǎn)E滑動(dòng)的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走9m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°.

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)CE在⊙O上,∠B=2ACE,在BA的延長(zhǎng)線上有一點(diǎn)P,使得∠P=BAC,弦CEAB于點(diǎn)F,連接AE

1)求證:PE是⊙O的切線;

2)若AF=2,AE=EF=,求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點(diǎn),腰AB與⊙O相切于點(diǎn)D

(1)求證:AC是⊙O的切線;

(2)如圖2,連接CD,若tanBCD,⊙O的半徑為,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了掌握我區(qū)中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師選取一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行調(diào)研,將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分為130)分為5組:第一組5570;第二組7085;第三組85100;第四組100115;第五組115130,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問題:

(1)本次調(diào)查共隨機(jī)抽取了__ _名學(xué)生;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)將得分轉(zhuǎn)化為等級(jí),規(guī)定:得分低于70分評(píng)為D70100分評(píng)為C,10011評(píng)為B,115130分評(píng)為A,根據(jù)目前的統(tǒng)計(jì),請(qǐng)你估計(jì)全區(qū)該年級(jí)4500名考生中,考試成績(jī)?cè)u(píng)為B級(jí)及其以上的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)概念

在兩個(gè)等腰三角形中,如果其中一個(gè)三角形的底邊長(zhǎng)和底角的度數(shù)分別等于另一個(gè)三角形的腰長(zhǎng)和頂角的度數(shù),那么稱這兩個(gè)等腰三角形互為姊妹三角形.

概念理解

1)如圖①,在ABC中,ABAC,請(qǐng)用直尺和圓規(guī)作出它的姊妹三角形(保留作圖痕跡,不寫作法).

特例分析

2)①在ABC中,ABAC,∠A30°,,求它的姊妹三角形的頂角的度數(shù)和腰長(zhǎng);

②如圖②,在ABC中,ABAC,DAC上一點(diǎn),連接BD.若ABCABD互為姊妹三角形,且ABC∽△BCD,則∠A   °

深入研究

3)下列關(guān)于姊妹三角形的結(jié)論:

①每一個(gè)等腰三角形都有姊妹三角形;

②等腰三角形的姊妹三角形是銳角三角形;

③如果兩個(gè)等腰三角形互為姊妹三角形,那么這兩個(gè)三角形可能全等;

④如果一個(gè)等腰三角形存在兩個(gè)不同的姊妹三角形,那么這兩個(gè)三角形也一定互為姊妹三角形.

其中所有正確結(jié)論的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案