已知一個正三角形與一個正六邊形面積相等,求兩者邊長之比.

 

答案:
解析:

 


提示:

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、如圖,已知∠AOB=120°,OM平分∠AOB,將正三角形的一個頂點P放在射線OM上,兩邊分別與OA、OB交于點C、D.

(1)如圖①若邊PC和OA垂直,那么線段PC和PD相等嗎?為什么?
(2)如圖②將正三角形繞P點轉過一角度,設兩邊與OA、OB分別交于C′,D′,那么線段PC′和PD′相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的半徑為1,PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關于PQ對稱,其中第一個△A1B1C1的頂點A1與點P重合,第二個△A2B2C2的頂點A2是B1C1與PQ的交點,…,最后一個△AnBnCn的頂點Bn、Cn在圓上.如圖1,當n=1時,正三角形的邊長a1=
 
;如圖2,當n=2時,正三角形的邊長a2=
 
;如圖3,正三角精英家教網(wǎng)形的邊長an=
 
(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的半徑為1,PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關于PQ對稱,其中第一個△A1B1C1的頂點A1與點P重合,第二個△A2B2C2的頂點A2是B1C1與PQ的交點,…,最后一個△AnBnCn的頂點Bn、Cn在圓上.
精英家教網(wǎng)精英家教網(wǎng)
(1)如圖1,當n=1時,求正三角形的邊長a1
(2)如圖2,當n=2時,求正三角形的邊長a2;
(3)如題圖,求正三角形的邊長an(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•武侯區(qū)一模)已知a、b、c分別是△ABC的∠A、∠B、∠C的對邊(c>b),關于x的方程x2-2(b+c)x+2bc+a2=0有兩個相等的實數(shù)根,且∠B、∠C滿足關系式
3
sin∠B=sin∠C
,△ABC的外接圓面積為64π.
(1)求a,b,c的長.
(2)若D、E、F分別為AB、BC、AC的中點,點P為AB邊上的一個動點,PQ∥AC,且交BC于點Q,以PQ為一邊向點B的異側作正三角形PQH,設正三角形PQH與矩形EDAF的公共部分的面積為S,BP的長為
3
x.直接寫出S與x之間的關系.
(3)在(2)的情況下,當x=4
3
時,求S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•通州區(qū)一模)已知二次函數(shù)y=-x2+2ax-4a+8
(1)求證:無論a為任何實數(shù),二次函數(shù)的圖象與x軸總有兩個交點.
(2)當x≥2時,函數(shù)值y隨x的增大而減小,求a的取值范圍.
(3)以二次函數(shù)y=-x2+2ax-4a+8圖象的頂點A為一個頂點作該二次函數(shù)圖象的內(nèi)接正三角形AMN(M,N兩點在二次函數(shù)的圖象上),請問:△AMN的面積是與a無關的定值嗎?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案