若直角三角形三邊長分別為3,4,5,則該三角形斜邊上的高線為(  )
A、4
B、
10
3
C、
5
2
D、
12
5
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)已知某直角三角形的兩邊為3,4,則第三邊長等于
 

(2)若直角三角形斜邊上的高和中線分別是5cm,6cm,則它的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

直角三角形的三邊長分別是5,12,13,若此三角形內(nèi)一點到三邊的距離均為x,則x=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

現(xiàn)有如圖1的8張大小形狀相同的直角三角形紙片,三邊長分別是a、b、c.用其中4張紙片拼成如圖2的大正方形(空白部分是邊長分別為a和b的正方形);用另外4張紙片拼成如圖3的大正方形(中間的空白部分是邊長為c的正方形).

(一)觀察:
從整體看,圖2和圖3的大正方形的面積都可以表示為(a+b)2,結(jié)論①依據(jù)整個圖形的面積等于各部分面積的和.
圖2中的大正方形的面積又可以用含字母a、b的代數(shù)式表示為:
a2+b2+2ab
a2+b2+2ab
,結(jié)論②
圖3中的大正方形的面積又可以用含字母a、b、c的代數(shù)式表示為:
c2+2ab
c2+2ab
,結(jié)論③
(二)思考:
結(jié)合結(jié)論①和結(jié)論②,可以得到一個等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab
;
結(jié)合結(jié)論②和結(jié)論③,可以得到一個等式
a2+b2=c2
a2+b2=c2
;
(三)應用:
請你運用(二)中得到的結(jié)論任意選擇下列兩個問題中的一個解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分別以直角三角形三邊為直徑,向外作半圓(如圖4),三個半圓的面積分別記作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本題作為附加題,做對加2分)
若分別以直角三角形三邊為直徑,向上作三個半圓(如圖5),直角邊a=5,b=12,斜邊c=13,則表示圖中陰影部分面積和的數(shù)值是:
A
A
  A.有理數(shù)     B.無理數(shù)     C.無法判斷
請作出選擇,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若一個三角形的三邊長分別是m+1,m+2,m+3,則當m=
2
2
時,它是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若直角三角形的兩邊長分別是4cm和3cm,則第三邊長( 。

查看答案和解析>>

同步練習冊答案