一個(gè)邊長為的正方形廣場,擴(kuò)建后邊長增加2,擴(kuò)建后廣場的面積為

A.           B.           C.          D.

 

【答案】

D

【解析】

試題分析:先表示出擴(kuò)建后的正方形的邊長,再根據(jù)正方形的面積公式即可得到結(jié)果.

由題意得擴(kuò)建后廣場的面積為,故選D.

考點(diǎn):本題考查的是列代數(shù)式

點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握正方形的面積公式,即可完成.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定它們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知小麗和小穎購買同一種商品的平均價(jià)格分別為
a+b
2
元/千克和
2ab
a+b
元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價(jià)格的高低.
(2)試比較圖2和圖3中兩個(gè)矩形周長M1、N1的大。╞>c).
精英家教網(wǎng)
聯(lián)系拓廣
小剛在超市里買了一些物品,用一個(gè)長方體的箱子“打包”,這個(gè)箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,問哪種方法用繩最短?哪種方法用繩最長?請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣陽區(qū)一模)問題情境:
如圖,正方形ABCD的邊長為6,點(diǎn)E是射線BC上的一個(gè)動(dòng)點(diǎn),連結(jié)AE并延長,交射線DC于點(diǎn)F,將△ABE沿直線AE翻折,點(diǎn)B坐在點(diǎn)B′處.
自主探究:
(1)當(dāng)
BE
CE
=1時(shí),如圖1,延長AB′,交CD于點(diǎn)M.
     ①CF的長為
6
6
;
     ②求證:AM=FM.
(2)當(dāng)點(diǎn)B′恰好落在對(duì)角線AC上時(shí),如圖2,此時(shí)CF的長為
6
2
6
2
,
BE
CE
=
2
2
2
2

拓展運(yùn)用:
 (3)當(dāng)
BE
CE
=2時(shí),求sin∠DAB′的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【問題提出】如何把n個(gè)正方形拼接成一個(gè)大正方形?
為解決上面問題,我們先從最基本,最特殊的情形入手.對(duì)于邊長為a的兩個(gè)正方形ABCD和EFGH,如何把它們拼接成一個(gè)正方形?
【問題解決】對(duì)于邊長為a的兩個(gè)正方形ABCD和EFGH,按圖所示的方式擺放,在沿虛線BD,EG剪開后,可以按圖中所示的移動(dòng)方式拼接為圖中的四邊形BNED.從拼接的過程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
【類比應(yīng)用】
對(duì)于邊長分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖所示的方式擺放,連接DE,過點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過點(diǎn)M作MN⊥DM,過點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N.明四邊形MNED是正方形,并請(qǐng)你用含a,b的代數(shù)式表示正方形MNED的面積;
②如圖,將正方形ABCD和正方形EFGH沿虛線剪開后,能夠拼接為正方形MNED,請(qǐng)簡略說明你的拼接方法(類比如圖,用數(shù)字表示對(duì)應(yīng)的圖形直接畫在圖中).
【拓廣延伸】對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(10分)

問題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類別應(yīng)用
(1)已知小麗和小穎購買同一種商品的平均價(jià)格分別為元/千克和元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價(jià)格的高低.
(2)試比較圖2和圖3中兩個(gè)矩形周長M1、N1的大小(b>c).
聯(lián)系拓廣
小剛在超市里買了一些物品,用一個(gè)長方體的箱子“打包”,這個(gè)箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖北黃石卷)數(shù)學(xué) 題型:解答題

(10分)

問題提出

我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類別應(yīng)用

(1)已知小麗和小穎購買同一種商品的平均價(jià)格分別為元/千克和元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價(jià)格的高低.

 (2)試比較圖2和圖3中兩個(gè)矩形周長M1、N1的大小(b>c).

 

 

 

 

 

 

 

聯(lián)系拓廣

小剛在超市里買了一些物品,用一個(gè)長方體的箱子“打包”,這個(gè)箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案