【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則正方形ABCD的面積為

A. B. 5C. 3D.

【答案】B

【解析】

過(guò)D點(diǎn)作直線EF與平行線垂直,與l1交于點(diǎn)E,與l4交于點(diǎn)F.易證ADE≌△DFC,得CF=1,DF=2.根據(jù)勾股定理可求CD2得正方形的面積.

EFl2,交l1E點(diǎn),交l4F點(diǎn).

l1l2l3l4,EFl2

EFl1,EFl4

即∠AED=DFC=90°

ABCD為正方形,

∴∠ADC=90°

∴∠ADE+CDF=90°

又∵∠ADE+DAE=90°

∴∠CDF=DAE

ADEDCF

∴△ADE≌△DCFAAS),

CF=DE=1

DF=2

CD2=12+22=5,

即正方形ABCD的面積為5

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1 4a3b-6a2b2+12ab3÷2ab

2 a3·a4·a+(a2)4+(-2a4)2

3

4

5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,.解決下列問(wèn)題:

1= ,= ;

2)若=2,則的取值范圍是 ;若=1,則的取值范圍是 ;

3)已知,滿足方程組,求,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某中學(xué)計(jì)劃購(gòu)進(jìn)若干個(gè)甲種規(guī)格的排球和乙種規(guī)格的足球.如果購(gòu)買個(gè)甲種規(guī)格的排球和個(gè)乙種規(guī)格的足球,一共需要花費(fèi);如果購(gòu)買個(gè)甲種規(guī)格的排球和個(gè)乙種規(guī)格的足球,一共需要花費(fèi).

求每個(gè)甲種規(guī)格的排球和每個(gè)乙種規(guī)格的足球的價(jià)格分別是多少元?

如果學(xué)校要購(gòu)買甲種規(guī)格的排球和乙種規(guī)格的足球共個(gè),并且預(yù)算總費(fèi)用不超過(guò)3080元,那么該學(xué)校至多能購(gòu)買多少個(gè)乙種規(guī)格的足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線my=﹣0.25x+h2+kx軸的交點(diǎn)為A,B,與y軸的交點(diǎn)為C,頂點(diǎn)為M3,6.25),將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為D

1)求拋物線n的解析式;

2)設(shè)拋物線nx軸的另一個(gè)交點(diǎn)為E,點(diǎn)P是線段DE上一個(gè)動(dòng)點(diǎn)(P不與D,E重合),過(guò)點(diǎn)Py軸的垂線,垂足為F,連接EF.如果P點(diǎn)的坐標(biāo)為(x,y),PEF的面積為S,求Sx的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;

3)設(shè)拋物線m的對(duì)稱軸與x軸的交點(diǎn)為G,以G為圓心,A,B兩點(diǎn)間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)要調(diào)查社區(qū)居民雙休日的體育鍛煉情況,采用下列調(diào)查方式:

A.從一幢高層住宅樓中選取200名居民;

B.從不同住宅樓中隨機(jī)選取200居民;

C.選取社區(qū)內(nèi)200名在校學(xué)生

1)上述調(diào)查方式最合理的是___________________;

2)將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計(jì)圖(如圖1)和頻數(shù)分布直方圖(如圖2.在這個(gè)調(diào)查中,200名居民雙休日在戶外體育鍛煉的有_____________人;

3)調(diào)查中的200名居民在戶外鍛煉1小時(shí)的人數(shù)為__________________;

4)請(qǐng)你估計(jì)該社區(qū)1600名居民雙休日體育鍛煉時(shí)間不少于3小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,將線段平移得到線段,點(diǎn)的坐標(biāo)為,連結(jié).

1)點(diǎn)的坐標(biāo)為__________________(用含的式子表示);

2)若的面積為4,求點(diǎn)的坐標(biāo);

3)如圖2,在(2)的條件下,延長(zhǎng)軸于點(diǎn),延長(zhǎng)軸于,軸上一動(dòng)點(diǎn),的值記為,在點(diǎn)運(yùn)動(dòng)的過(guò)程中,的值是否發(fā)生變化,若不變,請(qǐng)求出的值,并寫出此時(shí)的取值范圍,若變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB40°,點(diǎn)COA上,點(diǎn)POB上一動(dòng)點(diǎn),∠CPB的角平分線PD交射線OAD。設(shè)∠OCP的度數(shù)為,∠CDP的度數(shù)為

小明對(duì)xy之間滿足的等量關(guān)系進(jìn)行了探究,

下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整;

1x的取值范圍是 ;

2)按照下表中x的值進(jìn)行取點(diǎn)、畫圖、計(jì)算,分別得到了yx的幾組對(duì)應(yīng)值,補(bǔ)全表格;

3)在平面直角坐標(biāo)系xOy中,

①描出表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y);

②描出當(dāng)x120°時(shí),y的值;

4)若∠AOB°,題目中的其它條件不變,用含、x的代數(shù)式表示y

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為的正方形,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)的坐標(biāo)是.

1)將先向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,在圖中畫出第二次平移后的圖形△.

2)如果將看成是由經(jīng)過(guò)一次平移得到的,則這一次平移的方向?yàn)開(kāi)________,平移的距離為_(kāi)__________.

3)請(qǐng)畫出關(guān)于坐標(biāo)原點(diǎn)的中心對(duì)稱圖形

查看答案和解析>>

同步練習(xí)冊(cè)答案