22、在我們周圍,方程時時處處伴隨著我們,你能根據(jù)你班的男女同學的人數(shù)編一道應用題嗎列出方程.
分析:此題可以已知班級總人數(shù),和男女同學人數(shù)之間的關系進行編應用題.列方程即可求解.
解答:例如:我們班共有45人,其中男生人數(shù)是女生人數(shù)的2倍,則我們班有多少女生?
解:設女生人數(shù)有x人,則男生人數(shù)有2x人.
根據(jù)題意得:x+2x=45,
解得:x=15.
答:女生有15人.
點評:在生活中要處處留心,數(shù)學無處不在.要熟悉應用題的解法,注意數(shù)量之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

有一個算式分子都是整數(shù),滿足
(  )
3
+
(  )
5
+
(  )
7
≈1.16,那么你能算出他們的分子依次是哪些數(shù)嗎?
在我們的教科書中選取了一些具體值并將它們代入要解的一元二次方程中,大致估計出一元二次方程解的范圍,再在這個范圍內(nèi)逐步加細賦值,進而逐步估計出一元二次方程的近似解.下面介紹另外一種估計一元二次方程近似解的方法,以方程x2-3x-1=0為例,因為x≠0,所以先將其變形為x=3+
1
x
,用3+
1
x
代替x,得x=3+
1
x
=3+
1
3+
1
x
.反復若干次用3+
1
x
代替x,就得到x=3+
1
3+
1
3+
1
3+
1
3+
1
x
形如上式右邊的式子稱為連分數(shù).
可以猜想,隨著替代次數(shù)的不斷增加,右式最后的
1
x
對整個式子的值的影響將越來越小,因此可以根據(jù)需要,在適當時候把
1
x
忽略不計,例如,當忽略x=3+
1
x
中的
1
x
時,就得到x=3;當忽略x=3+
1
3+
1
x
中的
1
x
時,就得到x=3+
1
3
;如此等等,于是可以得到一系列分數(shù);
3,3+
1
3
,3+
1
3+
1
3
,3+
1
3+
1
3
1
3
,…,即3,
10
3
=3.333…,
33
10
≈3.3.
109
33
=3.303 03…,….
可以發(fā)現(xiàn)它們越來越趨于穩(wěn)定,事實上,這些數(shù)越來越近似于方程x2-3x-1=0的正根,而且它的算法也很簡單,就是以3為第一個近似值,然后不斷地求倒數(shù),再加3而已,在計算機技術極為發(fā)達的今天,只要編一個極為簡單的程序,計算機就能很快幫你算出它的多個近似值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在向紅星鎮(zhèn)居民介紹王家莊位置的時候,我們可以這樣說:如圖1,在以紅星鎮(zhèn)為原點,正東方向為x軸正方向,正北方向為y軸正方向的平面直角坐標系(1單位長度表示的實際距離為1km)中,王家莊的坐標為(5,5);也可以說,王家莊在紅星鎮(zhèn)東北方向
50
km的地方.

還有一種方法廣泛應用于航海、航空、氣象、軍事等領域.如圖2:在紅星鎮(zhèn)所建的雷達站O的雷達顯示屏上,把周角每15°分成一份,正東方向為0°,相鄰兩圓之間的距離為1個單位長度(1單位長度表示的實際距離為1km),現(xiàn)發(fā)現(xiàn)2個目標,我們約定用(10,15°)表示點M在雷達顯示器上的坐標,則:
(1)點N可表示為
(8,135°)
(8,135°)
;王家莊位置可表示為
50
,45°)
50
,45°)
;點N關于雷達站點0成中心對稱的點P的坐標為
(8,315°)
(8,315°)
;
(2)S△OMP=
20
2
20
2

(3)若有一家大型超市A在圖中(4,30°)的地方,請直接標出點A,并將超市A與雷達站O連接,現(xiàn)準備在雷達站周圍建立便民服務店B,使得△ABO為底角30°的等腰三角形,請直接寫出B點在雷達顯示屏上的坐標.
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在我們周圍,方程時時處處伴隨著我們,你能根據(jù)你班的男女同學的人數(shù)編一道應用題嗎列出方程.

查看答案和解析>>

科目:初中數(shù)學 來源:期中題 題型:解答題

在我們周圍,方程時時處處伴隨著我們,你能根據(jù)你班的男女同學的人數(shù)編一道應用題嗎列出方程.

查看答案和解析>>

同步練習冊答案