【題目】如圖,正方形的邊長為,點為邊上一點,,點為的中點,過點作直線分別與,相交于點,.若,則長為______.
【答案】1或2
【解析】
根據題意畫出圖形,過P作PN⊥BC,交BC于點N,由ABCD為正方形,得到AD=DC=PN,在直角三角形ADE中,利用銳角三角函數定義求出DE的長,進而利用勾股定理求出AE的長,根據M為AE中點求出AM的長,利用HL得到三角形ADE與三角形PQN全等,利用全等三角形對應邊,對應角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN與DC平行,得到∠PFA=∠DEA=60°,進而得到PM垂直于AE,在直角三角形APM中,根據AM的長,利用銳角三角函數定義求出AP的長,再利用對稱性確定出AP′的長即可.
根據題意畫出圖形,過點作,交于點,交于點,四邊形為正方形,.
在中,,cm,
cm.
根據勾股定理得cm.
為的中點,cm,
在和中,
,
,.
,,
,即.
在中,, cm.
由對稱性得到 cm,
綜上,等于1cm或2cm.
故答案為:1或2.
科目:初中數學 來源: 題型:
【題目】在喜迎建黨九十周年之際,某校舉辦校園唱紅歌比賽,選出10名同學擔任評委,并事先擬定從如下四種方案中選擇合理方案來確定演唱者的最后得分(每個評委打分最高10分).
方案1:所有評委給分的平均分.
方案2:在所有評委中,去掉一個最高分和一個最低分,再計算剩余評委的平均分.
方案3:所有評委給分的中位數.
方案4:所有評委給分的眾數.
為了探究上述方案的合理性,
先對某個同學的演唱成績進行統(tǒng)計實驗,右側是這個同學的得分統(tǒng)計圖:
(1)分別按上述四種方案計算這個同學演唱的最后得分.
(2)根據(1)中的結果,請用統(tǒng)計的知識說明哪些方案不適合作為這個同學演唱的最后得分?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】校車安全是近幾年社會關注的熱門話題,其中超載和超速行駛是校車事故的主要原因.小亮和同學嘗試用自己所學的三角函數知識檢測校車是否超速,如下圖,觀測點設在到白田路的距離為100米的點P處.這時,一輛校車由西向東勻速行駛,測得此校車從A處行駛到B處所用的時間為4秒,且∠APO=60°,∠BPO =45°.
(1)求A、B之間的路程;(參考數據: , )
(2)請判斷此校車是否超過了白田路每小時60千米的限制速度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園手機”現(xiàn)象越來越受到社會的關注.“五一”期間,小記者劉凱隨機調查了城區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次調查的家長人數,并補全圖①;
(2)求圖②中表示家長“贊成”的圓心角的度數;
(3)從這次接受調查的學生中,隨機抽查一個,恰好是“無所謂”態(tài)度的學生的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則B2的坐標為_____;點B2016的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2013年6月,某中學結合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據圖1和圖2提供的信息,解答下列問題:
(1)在這次抽樣調查中,一共調查了多少名學生?
(2)請把折線統(tǒng)計圖(圖1)補充完整;
(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數;
(4)如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使點D與點B重合,點C落在點C'處,折痕為EF,若∠ABE=25°,則∠EFC'的度數為( 。
A.122.5°B.130°C.135°D.140°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求若干個相同的不為零的有理數的除法運算叫做除方. 如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類比有理數的乘方,我們把 2÷2÷2 記作 2③,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3)④,讀作“-3 的圈 4 次方”.
一般地,把(a≠0)記作a,記作“a 的圈c次方”.
(1)直接寫出計算結果:2③= ,(-3)④ = ,⑤= .
(2)計算 24÷23 + (-8)×2③.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一次空中搜尋中,水平飛行的飛機觀測到在點A俯角為30°方向的F點處有疑似飛機殘骸的物體(該物體視為靜止).為了便于觀察,飛機繼續(xù)向前飛行了800米到達B點,此時測得點F在點B俯角為60°的方向上,請你計算當飛機飛臨F的正上方點C時(點A、B、C在同一直線上),豎直高度CF約為多少米?(結果保留整數,參考數值:≈1.7)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com