【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,

A100),C0,4),點(diǎn)DOA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng).

1)直接寫(xiě)出坐標(biāo):D   ,   );

2)當(dāng)四邊形PODB是平行四邊形時(shí),求t的值;

3)在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)Q,使得以O、P、D、Q為頂點(diǎn)四邊形為菱形,若存在,請(qǐng)直接寫(xiě)出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】15,0;(2t5;(3)滿(mǎn)足條件的點(diǎn)Q的坐標(biāo)為:(84)、(﹣3,4)、(34)、(2.5,﹣4).

【解析】

1)根據(jù)中點(diǎn)的定義求出OD的長(zhǎng)即可解決問(wèn)題;

2)利用平行四邊形的性質(zhì)求出PC5即可解決問(wèn)題;

3)分四種情形:當(dāng)P1OOD5P2OP2DP3DOD5P4DOD5時(shí),分別求解即可.

解:(1)∵A10,0),ODDA,

OA10,ODDA5

D5,0).

故答案為5,0

2)∵四邊形 PODB 是平行四邊形,

PBOD5,

PC5,

t5

3)當(dāng)P1OOD5時(shí),由勾股定理可以求得P1C3,可得Q18,4

當(dāng)P2OP2D時(shí),作P2EOA,

OEED2.5,可得Q22.5,﹣4),

當(dāng)P3DOD5時(shí),作DFBC,由勾股定理,得P3F3,

P3C2,可得Q3(﹣3,4),

當(dāng)P4DOD5時(shí),作P4GOA,由勾股定理,得DG3,

OG8,可得Q434),

綜上所述,滿(mǎn)足條件的點(diǎn)Q的坐標(biāo)為:(8,4)、(﹣3,4)、(3,4)、(2.5,﹣4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代第一部數(shù)學(xué)專(zhuān)著,其中有這樣一道名題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問(wèn)幾步及之?”意思是說(shuō):走路快的人走100步的時(shí)候,走路慢的才走了60步,走路慢的人先走100步,然后走路快的人去追趕,問(wèn)走路快的人要走多少部才能追上?若設(shè)走路快的人要走x步才能追上走路慢的人,此時(shí)走路慢的人又走了y步,根據(jù)題意可列方程組為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃購(gòu)買(mǎi)一批排球和足球,已知購(gòu)買(mǎi)2個(gè)排球和1個(gè)足球共需321元,購(gòu)買(mǎi)3個(gè)排球和2個(gè)足球共需540元.

(1)求每個(gè)排球和足球的售價(jià);

(2)若學(xué)校計(jì)劃購(gòu)買(mǎi)這兩種球共50個(gè),總費(fèi)用不超過(guò)5500元,那么最多可購(gòu)買(mǎi)足球多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料并解決問(wèn)題:

1+2+22+23+…...+22014的值,另S=1+2+22+23+…...+22014,

等式兩邊同時(shí)乘2,得2S=2+22+23+.......+22014+22015

兩式相減,得2S - S = 22015 -1 所以S = 22015 - 1

依據(jù)以上計(jì)算方法,計(jì)算:1 + 3 + 32 + ..... + 32019

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市有5 000萬(wàn)人口,若平均每3.3人為一個(gè)家庭,平均每個(gè)家庭每周丟棄5個(gè)塑料袋,一年將丟棄多少個(gè)塑料袋?若每1 000個(gè)塑料袋污染1平方米土地,那么該城市一年被塑料袋污染的土地是多少?(保留2個(gè)有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題:

18+(-10)+(-2)-(-5)

2

3

4-

5

6

7)(×4

8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC;

(2)當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知CAB的中點(diǎn),DAC的中點(diǎn),EBC的中點(diǎn).

(1)DE=9cm,求AB的長(zhǎng).

(2)CE=5cm,求DB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,P是線(xiàn)段AB上的一點(diǎn),在AB的同側(cè)作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,點(diǎn)E、F、G、H分別是AC、AB、BD、CD的中點(diǎn),順次連接E、F、G、H.

(1)猜想四邊形EFGH的形狀,直接回答,不必說(shuō)明理由;

(2)當(dāng)點(diǎn)P在線(xiàn)段AB的上方時(shí),如圖2,在△APB的外部作△APC和△BPD,其他條件不變,(1)中的結(jié)論還成立嗎?說(shuō)明理由;

(3)如果(2)中,∠APC=∠BPD=90°,其他條件不變,先補(bǔ)全圖3,再判斷四邊形EFGH的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案