如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線(xiàn)交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),已知點(diǎn)坐標(biāo)為(6,0).
(1)求此拋物線(xiàn)的解析式;
(2)聯(lián)結(jié) AB,過(guò)點(diǎn)作線(xiàn)段的垂線(xiàn)交拋物線(xiàn)于點(diǎn),如果以點(diǎn)為圓心的圓與拋物線(xiàn)的對(duì)稱(chēng)軸相切,先補(bǔ)全圖形,再判斷直線(xiàn)與⊙的位置關(guān)系并加以證明;
(3)已知點(diǎn)是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且位于,兩點(diǎn)之間.問(wèn):當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),的面積最大?求出的最大面積.
(1)解:∵拋物線(xiàn)的頂點(diǎn)為(4,1),
∴設(shè)拋物線(xiàn)解析式為.
∵拋物線(xiàn)經(jīng)過(guò)點(diǎn)(6,0),∴.∴.
∴.
所以?huà)佄锞(xiàn)的解析式為
(2) 補(bǔ)全圖形、判斷直線(xiàn)BD與⊙相離.
證明:令=0,則,. ∴點(diǎn)坐標(biāo)(2,0).
又∵拋物線(xiàn)交軸于點(diǎn),∴A點(diǎn)坐標(biāo)為(0,-3),∴.
設(shè)⊙與對(duì)稱(chēng)軸l相切于點(diǎn)F,則⊙的半徑CF=2,
作⊥BD于點(diǎn)E,則∠BEC=∠AOB=90°.
∵,∴.
又∵,∴.
∴∽,∴.
∴,∴.
∴直線(xiàn)BD與⊙相離
(3) 解:如圖,過(guò)點(diǎn)作平行于軸的直線(xiàn)交于點(diǎn).
∵A(0,-3),(6,0).
∴直線(xiàn)解析式為.
設(shè)點(diǎn)坐標(biāo)為(,),
則點(diǎn)的坐標(biāo)為(,).
∴PQ=-()=.
∵,
∴當(dāng)時(shí),的面積最大為.
∵當(dāng)時(shí),=
∴點(diǎn)坐標(biāo)為(3,).
綜上:點(diǎn)的位置是(3,),的最大面積是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,PA、PB是⊙O的切線(xiàn),A、B分別為切點(diǎn),PO交圓于點(diǎn)C,若∠APB=60°,PC=6,則AC的長(zhǎng)為
A.4 | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知:如圖,在△ABC中,AB=AC,以AC為直徑的⊙O與BC交于點(diǎn)D,DE⊥AB,垂足為E,ED的延長(zhǎng)線(xiàn)與AC的延長(zhǎng)線(xiàn)交于點(diǎn)F.
(1)求證:DE是⊙O的切線(xiàn);
(2)若⊙O的半徑為4,BE=2,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在⊙O上,∠1=∠C,
(1)求證:CB∥PD;
(2)若AB=5,sin∠P=,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知⊙O的半徑為R,C、D是直徑AB的同側(cè)圓周上的兩點(diǎn),弧AC的度數(shù)為100°弧BC=2弧BD,動(dòng)點(diǎn)P在線(xiàn)段AB上,則PC+PD的最小值為 ( )(原創(chuàng))
A.R B.R C.R D.R
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com