【題目】如圖,在平行四邊形ABCD中,E F分別為邊AB、CD的中點(diǎn),BD是對角線.過點(diǎn)有作AGDBCB的延長線于點(diǎn)G.

(1)求證:△ADE≌△CBF;

(2)若∠G=90° ,求證:四邊形DEBF是菱形.

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)根據(jù)已知條件證明AE=CF,從而根據(jù)SAS可證明兩三角形全等;

2)先證明DE=BE,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.

證明:(1)∵四邊形ABCD是平行四邊形,

AB=CDAD=BC,∠A=C

∵點(diǎn)E、F分別是AB、CD的中點(diǎn),

AE=AB,CF=CD,

AE=CF,

ADECBF中,

,

∴△ADE≌△CBFSAS);

2)∵∠G=90°AGBD,ADBG,

∴四邊形AGBD是矩形,

∴∠ADB=90°,

RtADB

EAB的中點(diǎn),

AE=BE=DE,

DFBE,DF=BE,

∴四邊形DEBF是平行四邊形,

∴四邊形DEBF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;

(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+cx軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x-2經(jīng)過A、C兩點(diǎn),且AB=2

1)求拋物線的解析式;

2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動,(如圖2);當(dāng)點(diǎn)P運(yùn)動到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動,連DP,若點(diǎn)P運(yùn)動時(shí)間為t秒;設(shè)s=,當(dāng)t為何值時(shí),s有最小值,并求出最小值.

3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)aB點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.

(1) a= ,b= ,c=

(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.

(3) 點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動,同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和4個(gè)單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= BC= .(用含t的代數(shù)式表示)

(4) 請問:3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】檢修小組從A地出發(fā),在東西路上檢修線路,若規(guī)定向東行駛的路程為正數(shù),向西行駛的路程為負(fù)數(shù),一天中行駛記錄(單位;千米)如下:

1)收工時(shí)檢修小組在A地的哪側(cè),距A地多遠(yuǎn)?

2)若每千米耗油0.3升,從出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y= x+6的圖象與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)A關(guān)于y軸對稱.動點(diǎn)P、Q分別在線段AC、AB(點(diǎn)P與點(diǎn)AC不重合),且滿足∠BPQ=BAO

(1)求點(diǎn)A、 B的坐標(biāo)及線段BC的長度;

(2)當(dāng)點(diǎn)P在什么位置時(shí),△APQ≌△CBP,說明理由;

(3)當(dāng)△PQB為等腰三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn)如果單獨(dú)投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系yA=kx;如果單獨(dú)投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系yB=ax2+bx.根據(jù)公司信息部的報(bào)告,yA、yB(萬元)與投資金額x(萬元)的部分對應(yīng)值(如下表)

(1)求正比例函數(shù)和二次函數(shù)的解析式;

(2)如果公司準(zhǔn)備投資20萬元同時(shí)開發(fā)A、B兩種新產(chǎn)品,請你設(shè)計(jì)一個(gè)能獲得最大利潤的投資方案并求出按此方案能獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,對角ACBD交于點(diǎn)O,EF分別是邊BC,AD的中點(diǎn),AB2,BC4,一動點(diǎn)P從點(diǎn)B出發(fā),沿著BADC在矩形的邊上運(yùn)動,運(yùn)動到點(diǎn)C停止,點(diǎn)M為圖1中某一定點(diǎn),設(shè)點(diǎn)P運(yùn)動的路程為x,△BPM的面積為y,表示yx的函數(shù)關(guān)系的圖象大致如圖2所示.則點(diǎn)M的位置可能是圖1中的( 。

A. 點(diǎn)CB. 點(diǎn)OC. 點(diǎn)ED. 點(diǎn)F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究一次函數(shù)y=kx+k+2k是不為0常數(shù))圖象的共性特點(diǎn),探究過程:小明嘗試把x=-1代入時(shí),發(fā)現(xiàn)可以消去k,竟然求出了y=2.老師問:結(jié)合一次函數(shù)圖象,這說明了什么?小組討論得出:無論k取何值,一次函數(shù)y=kx+k+2的圖象一定經(jīng)過定點(diǎn)(-1,2),老師:如果一次函數(shù)的圖象是經(jīng)過某一個(gè)定點(diǎn)的直線,那么我們把像這樣的一次函數(shù)的圖象定義為點(diǎn)旋轉(zhuǎn)直線.已知一次函數(shù)y=k+3x+k-1)的圖象是點(diǎn)旋轉(zhuǎn)直線

1)一次函數(shù)y=k+3x+k-1)的圖象經(jīng)過的定點(diǎn)P的坐標(biāo)是__________

2)已知一次函數(shù)y=k+3x+k-1)的圖象與x軸、y軸分別相交于點(diǎn)A、B

①若OBP的面積為3,求k值;

②若AOB的面積為1,求k值.

查看答案和解析>>

同步練習(xí)冊答案