【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC.
(1)當(dāng)∠B=40°時(shí),求∠ADC的度數(shù);
(2)若AB=10cm,CD=4cm,求△ABD的面積.
【答案】
(1)解:∵∠C=90°,∠B=40°,
∴∠BAC=50°,
∵AD平分∠BAC,
∴ ,
∴∠ADC=∠B+∠BAD=65°
(2)解:過D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴ ABDE= ×10×4=20cm2.
【解析】(1)根據(jù)三角形的內(nèi)角和得到∠BAC=50°,根據(jù)三角形的外角的性質(zhì)即可得到結(jié)論;(2)過D作DE⊥AB于E,根據(jù)角平分線的性質(zhì)得到DE=CD=4,由三角形的面積公式即可得到結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用三角形的面積和三角形的內(nèi)角和外角,掌握三角形的面積=1/2×底×高;三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計(jì)算正確的是( 。
A. ﹣2a+5b=3abB. 6a+a=6a2
C. 3ab2﹣5b2a=﹣2ab2D. 4m2n﹣2mn2=2mn
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“☆”定義新運(yùn)算:對于任意實(shí)數(shù)a、b,都有a☆b=b2+1.例如7☆4=42+1=17,那么5☆3=;當(dāng)m為實(shí)數(shù)時(shí),m☆(m☆2)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多項(xiàng)式x2y﹣xy2+3xy﹣1的次數(shù)與項(xiàng)數(shù)分別是( 。
A. 2,4B. 3,3C. 3,4D. 8,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)F.
求證:BF=AC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com