如圖,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.點E是CD的中點,則AE的長是   
【答案】分析:首先作出輔助線連接DB,延長DA到F,使AD=AF,連接FC.根據(jù)三角形中位線定理可得AE=CF,再利用勾股定理求出BD的長,然后證明可得到△FDC≌△BCD,從而得到FC=DB,進而得到答案.
解答:解:連接DB,延長DA到F,使AD=AF.連接FC,
∵AD=5,
∴AF=5,
∵點E是CD的中點,
∴AE=CF,
在Rt△ABD中,
AD2+AB2=DB2
∴BD==13,
∵AB⊥BC,AB⊥AD,
∴AD∥BC,
∴∠ADC=∠BCD,
又∵DF=BC,DC=DC,
∴△FDC≌△BCD,
∴FC=DB=13,
∴AE=
故答案為:
點評:此題主要考查了三角形中位線定理,勾股定理的綜合運用,做題的關鍵是作出輔助線,證明BD=CF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.點E是CD的中點,則AE的長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.點E是CD的中點,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB=12,點C、D在AB上,且AC=DB=2,點P從點C沿線段CD向點D運動(運動到點D停止),以AP、BP為斜邊在AB的同側畫等腰Rt△APE和等腰Rt△PBF,連接EF,取EF的中點G,則下列說法中正確的有( 。 
①△EFP的外接圓的圓心為點G;②△EFP的外接圓與AB相切;
③四邊形AEFB的面積不變;④EF的中點G移動的路徑長為4.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年河北香河實驗初級中學第一次模擬初三數(shù)學試卷 題型:選擇題

如圖,已知AB=12,點C、D在AB上,且AC=DB=2,點P從點C沿線段CD向點D運

動(運動到點D停止),以AP、BP為斜邊在AB的同側畫等腰Rt△APE和等腰Rt△PBF,連

接EF,取EF的中點G,則下列說法中正確的有

①△EFP的外接圓的圓心為點G;②△EFP的外接圓與AB相切;

③四邊形AEFB的面積不變;④EF的中點G移動的路徑長為4

A.1個        B.2個        C.3個        D.4個

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(新疆烏魯木齊卷)數(shù)學 題型:填空題

如圖,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.點E是CD的中點,則AE的長是___________。

 

查看答案和解析>>

同步練習冊答案