【題目】如圖已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )

A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4

【答案】B

【解析】

利用全等三角形判定定理ASA,SAS,AAS對(duì)各個(gè)選項(xiàng)逐一分析即可得出答案.

A、∵∠1=2,AB為公共邊,若AC=AD,則ABC≌△ABD(SAS),故本選項(xiàng)錯(cuò)誤;

B、∵∠1=2,AB為公共邊,若BC=BD,則不一定能使ABC≌△ABD,故本選項(xiàng)正確;

C、∵∠1=2,AB為公共邊,若∠C=D,則ABC≌△ABD(AAS),故本選項(xiàng)錯(cuò)誤;

D、∵∠1=2,AB為公共邊,若∠3=4,則ABC≌△ABD(ASA),故本選項(xiàng)錯(cuò)誤;

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過(guò)A(1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸DE交x軸于點(diǎn)E,連接BD.

(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;

(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,過(guò)點(diǎn)P作PFx軸于點(diǎn)F,G為拋物線上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線PF上一動(dòng)點(diǎn),當(dāng)以F、M、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A14),B4,2),C3,5)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度).

1)請(qǐng)畫(huà)出將ABC向下平移5個(gè)單位后得到的A1B1C1;

2)將ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的A2B2C2,并直接寫(xiě)出點(diǎn)A旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A3,0)和點(diǎn)B2,0).直線為常數(shù),且)與BC交于點(diǎn)D,與軸交于點(diǎn)E,與AC交于點(diǎn)F

1)求拋物線的解析式;

2)連接AE,求為何值時(shí),AEF的面積最大;

3)已知一定點(diǎn)M2,0).問(wèn):是否存在這樣的直線,使BDM是等腰三角形?若存在,請(qǐng)求出的值和點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),《政府工作報(bào)告》中不斷提出了很多新的詞匯,為了解學(xué)生們對(duì)新詞匯的關(guān)注度,某數(shù)學(xué)興趣小組選取其中的“互聯(lián)網(wǎng)+政務(wù)服務(wù)”,“工匠精神”“光網(wǎng)城市”,“大眾旅游時(shí)代”四個(gè)熱詞在全校學(xué)生中進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位同學(xué)只能從中選擇一個(gè)我最關(guān)注的熱詞,根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計(jì)圖:請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

1)本次一共調(diào)查了多少名同學(xué)?

2)求出統(tǒng)計(jì)圖中,的值;

3)扇形統(tǒng)計(jì)圖中,熱詞、所在扇形統(tǒng)計(jì)圖的圓心角分別是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點(diǎn)D是AB邊上的一點(diǎn),DM⊥AB,且DM=AC,過(guò)點(diǎn)M作ME∥BC交AB于點(diǎn)E,

(1)試說(shuō)明△ABC與△MED全等;

(2)若∠M=35°,求∠B的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角三角形中,兩條直角邊的長(zhǎng)度分別為a和b,斜邊長(zhǎng)度為c,則a2+b2=c2,即兩條直角邊的平方和等于斜邊的平方,此結(jié)論稱為勾股定理.在一張紙上畫(huà)兩個(gè)同樣大小的直角三角形ABC和A′B′C′,并把它們拼成如圖所示的形狀 (點(diǎn)C和A′重合,且兩直角三角形的斜邊互相垂直).請(qǐng)利用拼得的圖形證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象相交于AB兩點(diǎn).利用圖中條件

1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;

2)根據(jù)圖象寫(xiě)出使該一次函數(shù)的值大于該反比例函數(shù)的值的x的取值范圍;

3)求出△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,A村和B村在一條大河CD的同側(cè),它們到河岸的距離AC、BD分別為1千米和4千米,又知道CD的長(zhǎng)為4千米.

1)現(xiàn)要在河岸CD上建一水廠向兩村輸送自來(lái)水.有兩種方案?jìng)溥x

方案1:水廠建在C點(diǎn),修自來(lái)水管道到A村,再到B村(即AC+AB).(如圖2

方案2:作A點(diǎn)關(guān)于直線CD的對(duì)稱點(diǎn)A',連接A'BCDM點(diǎn),水廠建在M點(diǎn)處,分別向兩村修管道AMBM.(即AM+BM)(如圖3

從節(jié)約建設(shè)資金方面考慮,將選擇管道總長(zhǎng)度較短的方案進(jìn)行施工,請(qǐng)利用已有條件分別進(jìn)行計(jì)算,判斷哪種方案更合適.

2)有一艘快艇Q從這條河中駛過(guò),當(dāng)快艇QCD中間,DQ為多少時(shí)?ABQ為等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案