【題目】如圖,AB⊙O的直徑,BC⊙O于點(diǎn)D,E的中點(diǎn),連接AEBC于點(diǎn)F∠ACB=2∠EAB

1)求證:AC⊙O的切線;

2)若cosC=,AC=6,求BF的長.

【答案】(1)證明見解析.(2BF的長為3

【解析】

1)證明:連結(jié)AD,如圖,

E的中點(diǎn),

,

∴∠EAB=EAD,

∵∠ACB=2EAB,

∴∠ACB=DAB,

AB是⊙O的直徑,

∴∠ADB=90°,

∴∠DAC+ACB=90°,

∴∠DAC+DAB=90°,即∠BAC=90°,

ACAB

AC是⊙O的切線;

2)解:作FHABH,如圖,

RtACD中,∵cosC=,

CD=×6=4,

RtACB中,∵cosC=,

BC=×6=9

BD=BCCD=94=5,

∵∠EAB=EAD,即AF平分∠BAD,而FDADFHAB,

FD=FH,

設(shè)BF=x,則DF=FH=5x,

FHAC

∴∠HFB=C,

RtBFH中,∵cosBFH=cosC=,

解得x=3,即BF的長為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)分別進(jìn)行6次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表

第一次

第二次

第三次

第四次

第五次

第六交

9

8

6

7

8

10

8

7

9

7

8

8

對他們的訓(xùn)練成績作如下分析,其中說法正確的是(  )

A. 他們訓(xùn)練成績的平均數(shù)相同 B. 他們訓(xùn)練成績的中位數(shù)不同

C. 他們訓(xùn)練成績的眾數(shù)不同 D. 他們訓(xùn)練成績的方差不同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,點(diǎn)P從點(diǎn)A出發(fā)沿ABC路徑勻速運(yùn)動到點(diǎn)C,到達(dá)點(diǎn)C時停止運(yùn)動,過點(diǎn)PPQAC于點(diǎn)Q. 若△APQ的面積為y,AQ的長為x,則下列能反映yx之間的大致圖象是 (  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實(shí)例:

實(shí)例一:1876年,美國總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由四邊形,化簡得:

實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于的方程的圖解法是:畫,使,,再在斜邊上截取,則的長就是該方程的一個正根(如實(shí)例二圖)

根據(jù)以上閱讀材料回答下面的問題:

1)如圖1,請利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是    ,乙圖要證明的數(shù)學(xué)公式是    ,體現(xiàn)的數(shù)學(xué)思想是    ;

2)如圖2,按照實(shí)例二的方式構(gòu)造,連接,請用含字母、的代數(shù)式表示的長,的表達(dá)式能和已學(xué)的什么知識相聯(lián)系;

3)如圖3,已知為直徑,點(diǎn)為圓上一點(diǎn),過點(diǎn)于點(diǎn),連接,設(shè),求證:

    

        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙OAD平分∠BAC⊙O于點(diǎn)D,交BC于點(diǎn)K,連接DB、DC

1)如圖1,求證:DBDC

2)如圖2,點(diǎn)E、F⊙O上,連接EFDBDC于點(diǎn)G、H,若DGCH,求證:EGFH;

3)如圖3,在(2)的條件下,BC經(jīng)過圓心O,且ADEF,BM平分∠ABCAD于點(diǎn)M,DKBM,連接GK、HKCM,若△BDK與△CKM的面積差為1,求四邊形DGKH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以AB為直徑的⊙OBC于點(diǎn)D,連結(jié)AD,請你添加一個條件,使△ABD≌△ACD,并說明全等的理由.

你添加的條件是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+5的圖象與反比例函數(shù)y=kx-1k≠0)在第一象限的圖象交于A1,n)和B兩點(diǎn).

1)求反比例函數(shù)的解析式與點(diǎn)B坐標(biāo);

2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點(diǎn)叫做格點(diǎn)ABC的三個頂點(diǎn)A,B,C都在格點(diǎn)上ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°得到AB′C′

1在正方形網(wǎng)格中,畫出AB′C′;

2計(jì)算線段AB在變換到AB′的過程中掃過的區(qū)域的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+by軸于點(diǎn)A,交x軸于點(diǎn)B,SAOB

1)求b的值;

2)點(diǎn)C以每秒1個單位長度的速度從O點(diǎn)出發(fā)沿x軸向點(diǎn)B運(yùn)動,點(diǎn)D以每秒2個單位長度的速度從A點(diǎn)出發(fā)沿y軸向點(diǎn)O運(yùn)動,CD兩點(diǎn)同時出發(fā),當(dāng)點(diǎn)D運(yùn)動到點(diǎn)O時,CD兩點(diǎn)同時停止運(yùn)動.連接CD,設(shè)點(diǎn)C的運(yùn)動時間為t秒,CDO的面積為S,求St的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)在(2)條件下,過點(diǎn)CCECDAB于點(diǎn)E,過點(diǎn)DDFx軸交AB于點(diǎn)F,過點(diǎn)FFHCE,垂足為H.在CH上取點(diǎn)M,使得MHHE833,連接FM,若∠FMHFEH,求t的值.

查看答案和解析>>

同步練習(xí)冊答案