【題目】(背景)某班在一次數學實踐活動中,對矩形紙片進行折疊實踐操作,并將其產生的數學問題進行相關探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點P是BC邊上一點,現將△APB沿AP對折,得△APM,顯然點M位置隨P點位置變化而發(fā)生改變
(問題)試求下列幾種情況下:點M到直線CD的距離
(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點.
【答案】
(1)解:當∠APB=75°時,如圖1,過M作EF⊥AD,則EF⊥BC,
∵∠AMP=∠B=∠MFP=90°,
∴∠AME=∠MPF,
∴△AEM∽△MFP,
∵∠APB=75°,
∴∠MPF=30°,
∵AM=AB=4,
∴AE=2,
∴DE=4
(2)解:當P與C重合,如圖2,過M作GH∥AD交BA,CD的延長線于G,H,
則四邊形ADHG是矩形,
∵∠AMP=∠ABC=∠AMC=90°,
∴∠AMG=∠MPH,
∴△AMG∽△MHP,
設AG=x,則DH=x,
∴PH=4+x,
∴ ,
∴MH= x,
在Rt△MHP中,MH2+PH2=MC2,
即( x)2+(4x)2=62,
∴x= (負值舍去),
∴MH=
(3)解:當P是BC的中點時,如圖3,過M作EF∥AB交AB,BC于E,F,
∵P是BC的中點,
∴BP=3,
設PF=x,則BF=3+x,
∴AE=3+x,
由折疊的性質得,AM=AB=4,PM=PB=3,∠AMP=∠B=90°,
∴△AEM∽△MFP,
∴ ,
∴EM= x,
在Rt△AEM中,
AE2+EM2=AM2,
即( x)2+(3+x)2=42,
∴x= (負值舍去),
∴DE= .
【解析】(1)如圖1,過M作EF⊥AD,則EF⊥BC,由∠AMP=∠B=∠MFP=90°,得到∠AME=∠MPF,推出△AEM∽△MFP,根據已知條件得到∠MPF=30°,AE=2,即可得到結論;(2)如圖2,過M作GH∥AD交BA,CD的延長線于G,H,則四邊形ADHG是矩形,推出△AMG∽△MHP,設AG=x,則DH=x,得到PH=4+x,列比例式得到MH= x,根據勾股定理得到x= (負值舍去),即可得到結論;(3)當P是BC的中點時,如圖3,過M作EF∥AB交AB,BC于E,F,推出△AEM∽△MFP,根據相似三角形的性質得到 ,得到EM= x,根據勾股定理列方程即可得到結論.
【考點精析】根據題目的已知條件,利用翻折變換(折疊問題)的相關知識可以得到問題的答案,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.
科目:初中數學 來源: 題型:
【題目】某超市計劃在“十周年”慶典當天開展購物抽獎活動,凡當天在該超市購物的顧客,均有一次抽獎的機會,抽獎規(guī)則如下:將如圖所示的圓形轉盤平均分成四個扇形,分別標上1,2,3,4四個數字,抽獎者連續(xù)轉動轉盤兩次,當每次轉盤停止后指針所指扇形內的數為每次所得的數(若指針指在分界線時重轉);當兩次所得數字之和為8時,返現金20元;當兩次所得數字之和為7時,返現金15元;當兩次所得數字之和為6時返現金10元.
(1)試用樹狀圖或列表的方法表示出一次抽獎所有可能出現的結果;
(2)某顧客參加一次抽獎,能獲得返還現金的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰三角形ABO的底邊OA在x軸上,頂點B在反比例函數y= (x>0)的圖象上,當底邊OA上的點A在x軸的正半軸上自左向右移動時,頂點B也隨之在反比例函數y= (x>0)的圖象上滑動,但點O始終位于原點.
(1)如圖①,若點A的坐標為(6,0),求點B的坐標;
(2)當點A移動到什么位置時,三角形ABO變成等腰直角三角形,請說明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點P在反比例函數y= (x>0)的圖象上,斜邊A1A在x軸上,求點A1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰三角形ABO的底邊OA在x軸上,頂點B在反比例函數y= (x>0)的圖象上,當底邊OA上的點A在x軸的正半軸上自左向右移動時,頂點B也隨之在反比例函數y= (x>0)的圖象上滑動,但點O始終位于原點.
(1)如圖①,若點A的坐標為(6,0),求點B的坐標;
(2)當點A移動到什么位置時,三角形ABO變成等腰直角三角形,請說明理由;
(3)在(2)中,如圖②,△PA1A是等腰直角三角形,點P在反比例函數y= (x>0)的圖象上,斜邊A1A在x軸上,求點A1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公園準備修建一塊長方形草坪,長為30米,寬為20米.并在草坪上修建如圖所示的十字路,已知十字路寬米,回答下列問題:
(1)修建十字路的面積是多少平方米?
(2)草坪(陰影部分)的面積是多少?
(3)如果十字路寬2米,那么草坪(陰影部分)的面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平行四邊形的一個內角平分線把平行四邊形一條邊分成2 cm和3 cm兩部分,則平行四邊形的周長為( ).
A. 10 cm B. 14 cm C. 16 cm D. 14 cm和16 cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將兩塊三角板的頂點重合.
(1)請寫出圖中所有以點為頂點且小于平角的角;
(2)你寫出的角中相等的角有________;
(3)若,試求的度數;
(4)當三角板繞點適當旋轉(保持兩三角板有重合部分)時,與之間具有怎樣的數量關系?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com