(2006•北京)已知:如圖,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求AD的長.

【答案】分析:過點C作,AB邊上的高CE,在RT△CAE中,利用三角函數(shù)求得AE,CE的長,從而便得到了BE的長,再根據(jù)三角函數(shù)便可求得AD的長.
解答:解:如圖,過點C作AB邊上的高CE,
則∠CAE=180°-120°=60°,
在Rt△ACE中,∠CEA=90°,
∵sin∠CAE=,cos∠CAE=,
∴CE=AC•sin60°=2×=,
AE=AC•cos60°=2×=1
∴BE=AB+AE=5;
在Rt△CBE中,由勾股定理得,BC=2,
∵AD⊥BC,
∴sin∠B=
∴AD=
點評:此題考查學生對輔助線的添加及解直角三角形的綜合運用能力,還考查解直角三角形的定義,由直角三角形已知元素求未知元素的過程,只要理解直角三角形中邊角之間的關系即可求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年3月九年級質量監(jiān)測數(shù)學試卷(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點.
(1)求此拋物線的解析式;
(2)若點D為線段OA的一個三等分點,求直線DC的解析式;
(3)若一個動點P自OA的中點M出發(fā),先到達x軸上的某點(設為點E),再到達拋物線的對稱軸上某點(設為點F),最后運動到點A′求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點.
(1)求此拋物線的解析式;
(2)若點D為線段OA的一個三等分點,求直線DC的解析式;
(3)若一個動點P自OA的中點M出發(fā),先到達x軸上的某點(設為點E),再到達拋物線的對稱軸上某點(設為點F),最后運動到點A′求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•北京)已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A、B不重合),D是OC的中點,連接BD并延長,交AC于點E.
(1)用含m的代數(shù)式表示點A、B的坐標;
(2)求的值;
(3)當C、A兩點到y(tǒng)軸的距離相等,且S△CED=時,求拋物線和直線BE的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市密云縣中考數(shù)學二模試卷(解析版) 題型:解答題

(2006•北京)已知:拋物線y=-x2+mx+2m2(m>0)與x軸交于A、B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A、B不重合),D是OC的中點,連接BD并延長,交AC于點E.
(1)用含m的代數(shù)式表示點A、B的坐標;
(2)求的值;
(3)當C、A兩點到y(tǒng)軸的距離相等,且S△CED=時,求拋物線和直線BE的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年北京市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•北京)已知拋物線y=ax2+bx+c與y軸交于點A(0,3),與x軸分別交于B(1,0)、C(5,0)兩點.
(1)求此拋物線的解析式;
(2)若點D為線段OA的一個三等分點,求直線DC的解析式;
(3)若一個動點P自OA的中點M出發(fā),先到達x軸上的某點(設為點E),再到達拋物線的對稱軸上某點(設為點F),最后運動到點A′求使點P運動的總路徑最短的點E、點F的坐標,并求出這個最短總路徑的長.

查看答案和解析>>

同步練習冊答案