精英家教網 > 初中數學 > 題目詳情

【題目】已知每件獎品價格相同,每件獎品價格相同,老師要網購兩種獎品件,若購買獎品件、獎品件,則微信錢包內的錢會差元;若購買獎品件、獎品件,則微信錢包的錢會剩余元,老師實際購買了獎品件,獎品件,則微信錢包內的錢會剩余__________.

【答案】1610

【解析】

A獎品價格為x/個,B獎品價格為y/個,微信錢包金額為z元,根據題意可得9x+7y=z+230,7x+9y=z-230,從而得到8x+8y=z,x-y=230,從而得到結論.

A獎品價格為x/個,B獎品價格為y/個,微信錢包金額為z元,根據題意得:

,

由①+②得:16x+16y=2z,8x+8y=z,則微信錢包金額剛好可以買8A產品和8B產品,

由①-②得:2x-2y=460,x-y=230,A的價格比B的價格多230,

∴x+15y=8x+8y-7(x-y)=z-7=z-1610,

∴微信錢包內的錢會剩余1610元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】定義:在平面直角坐標系中,對于任意兩點,,若點滿足,,那么稱點是點,的融合點.

例如:,,當點滿是時,則點是點的融合點,

1)已知點,,,請說明其中一個點是另外兩個點的融合點.

2)如圖,點,點是直線上任意一點,點是點的融合點.

①試確定的關系式.

②若直線軸于點,當為直角三角形時,求點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是O的弦,OPOA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.

(1)求證:BC是O的切線;

(2)若O的半徑為3,OP=1,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某織布廠有150名工人,為了提高經濟效益,增設制衣項目,已知每人每天能織布30m,或利用所織布制衣4,制衣一件需要布1.5m,將布直接出售,每米布可獲利2元,將布制成衣后出售,每件可獲利25元,若每名工人每天只能做一項工作,且不計其他因素,設安排x名工人制衣.

(1)一天中制衣所獲利潤P是多少(用含x的式子表示);

(2)一天中剩余布所獲利潤Q是多少 (用含x的式子表示);.

(3)一天當中安排多少名工人制衣時,所獲利潤為11806?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:小明在學習二次根式后,發(fā)現一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+2,善于思考的小明進行了以下探索:

a+b=(m+n2(其中a、b、m、n均為整數),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當a、b、m、n均為正整數時,若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=   ,b=   

(2)試著把7+4化成一個完全平方式.

(3)若a是216的立方根,b是16的平方根,試計算:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,點E,F分別在邊BC,CD上,且∠EAF=CEF=45°.

(1)ADF繞著點A順時針旋轉90°,得到ABG(如圖①),求證:AEG≌△AEF;

(2)若直線EFAB,AD的延長線分別交于點MN(如圖②),求證:EF2=ME2+NF2

(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點分別在的邊上運動(不與點重合),的平分線,的延長線交角的平分線于點.

1)若,求的度數.

2)若,求的度數.

3)若,請用含的代數式表示的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知三個頂點的坐標分別為,,

1)若將△ABC 向右平移三個單位長度得到△A1B1C1,則點 A1 的坐標為________

2)若△ABC 與△A2B2C2 關于原點 O 成中心對稱,則點 A2 的坐標________;

3)畫出△ABC 繞原點 O 順時針旋轉 90°后的對應圖形△A3B3C3,并寫出 A3 的坐標_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A的正前方60米處的C點,過了5秒后,測得小汽車所在的B點與車速檢測儀A之間的距離為100米.

BC間的距離;這輛小汽車超速了嗎?請說明理由.

【答案】這輛小汽車沒有超速.

【解析】

(1)根據勾股定理求出BC的長;
(2)直接求出小汽車的時速,進行比較得出答案.

(1)RtABC中,AC60 m,

AB100 m,且AB為斜邊,根據勾股定理,得BC80 m.

(2)這輛小汽車沒有超速.

理由:∵80÷516(m/s),

16 m/s57.6 km/h,57.6<70,

∴這輛小汽車沒有超速.

【點睛】

考查勾股定理的應用,熟練掌握勾股定理是解題的關鍵.

型】解答
束】
19

【題目】已知:如圖,線段ACBD相交于點G,連接AB,CD,ECD上一點,FDG上一點,,且

求證:;,,求的度數.

查看答案和解析>>

同步練習冊答案