精英家教網 > 初中數學 > 題目詳情
已知函數y=ax2+bx+c的圖象如圖所示,那么關于x的方程ax2+bx+c+2=0的根的情況是(   )
A.無實數根B.有兩個相等實數根
C.有兩個異號實數根D.有兩個同號不等實數根
D

試題分析:觀察圖象可得拋物線的最低點的縱坐標為-3,由ax2+bx+c+2=0可得ax2+bx+c=-2即得結果.
由圖可得拋物線的最低點的縱坐標為-3
由ax2+bx+c+2=0可得ax2+bx+c=-2
則方程ax2+bx+c+2=0有兩個同號不等實數根
故選D.
點評:解題的關鍵是由ax2+bx+c+2=0得到ax2+bx+c=-2,再結合圖象特征進行分析.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉,角的兩邊分別交y軸的正半軸、x軸的正半軸于點E和F.

(1)求經過A、B、C三點的拋物線的解析式;
(2)當BE經過(1)中拋物線的頂點時,求CF的長;
(3)在拋物線的對稱軸上取兩點P、Q(點Q在點P的上方),且PQ=1,要使四邊形BCPQ的周長最小,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點在第二象限,A(2,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.

(1)求折痕EF的長;
(2)直接寫出S與t的函數關系式及自變量t的取 值范圍.
(3)若四邊形BCFE平移時,另有一動點H與四邊形BCFE同時出發(fā),以每秒個單位長度從點A沿射線AC運動,試求出當t為何值時,△HE1E為等腰三角形?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:拋物線y1=-2x2+2與直線y2=2x+2相交
點A和點B,

(1)求出點A和點B的坐標。
(2)觀察圖象,請直接寫出y1>y2的自變量x的取值范圍。
(3)當x任取一值時,x對應的函數值分別為y1、y2.若y1≠y2,
取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.(例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.) 求:使得M=1的x值。=】

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

拋物線經過、兩點,與軸交于另一點

(1)求拋物線的解析式;
(2)已知點在第二象限的拋物線上,求點關于直線的對稱點的坐標;
(3)在(2)的條件下,連接,點為y軸
上一點,且,求出點的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

函數時,只在時取得最大值, 則實數的取值范圍是      

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關鍵的球,出手點為P,羽毛球距地面高度h(米)與其飛行的水平距離s(米)之間的關系式為.若球網AB距原點5米,乙(用線段CD表示)扣球的最大高度為2.25米,

(1)羽毛球的出手點高度為__________米;
(2)設乙的起跳點C的橫坐標為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導致接失敗,則m取值范圍是__________.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

二次函數的最大值是          

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數y= x2 +4x+3.

(1)用配方法將y= x2 +4x+3化成y=a (x-h) 2 +k的形式;
(2)在平面直角坐標系中,畫出這個二次函數的圖象;
(3)寫出當x為何值時,y>0.

查看答案和解析>>

同步練習冊答案