【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)E是AC的中點(diǎn).
(1)求證:直線DE是⊙O的切線;
(2)若⊙O半徑為1,BC=4,求圖中陰影部分的面積.
【答案】(1)見解析;(2)圖中陰影部分的面積為.
【解析】
(1)連接OE、OD,根據(jù)切線的性質(zhì)得到∠OAC=90°,根據(jù)三角形中位線定理得到OE∥BC,證明△AOE≌△DOE(SAS),根據(jù)全等三角形的性質(zhì)、切線的判定定理證明;
(2)求出AC,AE的長,得出∠AOD=120°,根據(jù)扇形的面積公式計算即可.
(1)證明:連接OE、OD,如圖,
∵AC是⊙O的切線,
∴AB⊥AC,
∴∠OAC=90°,
∵點(diǎn)E是AC的中點(diǎn),O點(diǎn)為AB的中點(diǎn),
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中
,
∴△AOE≌△DOE(SAS)
∴∠ODE=∠OAE=90°,
∴DE⊥OD,
∵OD為⊙O的半徑,
∴DE為⊙O的切線;
(2)∵⊙O半徑為1,
∴AB=2,
∵∠BAC=90°,BC=4,
∴∠C=30°,AC=,
∴∠B=60°,
∴∠AOD=2∠B=120°,
又∵點(diǎn)E是AC的中點(diǎn),
∴AE=AC=,
∴圖中陰影部分的面積=2S△AOE﹣S扇形AOD=2×××1﹣=﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B,D,E為格點(diǎn),C為,的延長線的交點(diǎn).
(Ⅰ)的結(jié)果為_________________.
(Ⅱ)若點(diǎn)R在線段上,點(diǎn)S在線段上,點(diǎn)T在線段上,且滿足四邊形為菱形,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出菱形,并簡要說明點(diǎn)R,S,T的位置是如何找到的(不要求證明)____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,且,.給出如下定義:若平面上存在一點(diǎn)P,使是以線段為斜邊的直角三角形,則稱點(diǎn)P為點(diǎn)A、點(diǎn)B的“直角點(diǎn)”.
(1)已知點(diǎn)A的坐標(biāo)為.
①若點(diǎn)B的坐標(biāo)為,在點(diǎn)、和中,是點(diǎn)A、點(diǎn)B的“直角點(diǎn)”的是_________;
②點(diǎn)B在x軸的正半軸上,且,當(dāng)直線上存在點(diǎn)A、點(diǎn)B的“直角點(diǎn)”時,求b的取值范圍;
(2)的半徑為r,點(diǎn)為點(diǎn)、點(diǎn)的“直角點(diǎn)”,若使得與有交點(diǎn),直接寫出半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣2與x軸交于點(diǎn)A,以OA為斜邊在x軸的上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當(dāng)點(diǎn)B落在直線y=x﹣2上時,則線段AB在平移過程中掃過部分的圖形面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為2的正方形ABCD中,P為AB上的一動點(diǎn),E為AD中點(diǎn),PE交CD延長線于Q,過E作EF⊥PQ交BC的延長線于F,則下列結(jié)論:①△APE≌△DQE;②PQ=EF;③當(dāng)P為AB中點(diǎn)時,CF=;④若H為QC的中點(diǎn),當(dāng)P從A移動到B時,線段EH掃過的面積為1,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點(diǎn),(不與點(diǎn)B、C)重合,將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關(guān)系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合),將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點(diǎn)A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形中,,點(diǎn)為邊上一個動點(diǎn)(不與點(diǎn)重合),點(diǎn)在邊上,且,將線段繞著點(diǎn)逆時針旋轉(zhuǎn)120°得線段,連接.
(1)依題意補(bǔ)全圖形;
(2)求證:為等邊三角形
(3)用等式表示線段的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E,H在矩形ABCD的AD邊上,點(diǎn)F,G在BC邊上,將矩形ABCD沿EF,GH折疊,使點(diǎn)B和點(diǎn)C落在AD邊上同一點(diǎn)P處.折疊后,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A',點(diǎn)D的對應(yīng)點(diǎn)為點(diǎn)D',若∠FPG=90°,A'E=3,D'H=1,則矩形ABCD的周長等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com