【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC的邊OB在x軸上,過(guò)點(diǎn)C(3,4)的雙曲線(xiàn)與AB交于點(diǎn)D,且AC=2AD,則點(diǎn)D的坐標(biāo)為_____.
【答案】(7,).
【解析】
如圖,作CF⊥OB于點(diǎn)F,作DE⊥OB于點(diǎn)E,連接CD并延長(zhǎng)CD交x軸于點(diǎn)M,根據(jù)勾股定理求得OC=5,設(shè)AC=2a,則AD=a,OB=2a,DB=5-a,證明△COF∽△DBE,根據(jù)相似三角形的性質(zhì)求得,,即可得D(,),因?yàn)辄c(diǎn)D在反比例函數(shù)的圖象上,可得方程·=12,解得a=或a=0(舍去);從而求得點(diǎn)D的坐標(biāo).
如圖,作CF⊥OB于點(diǎn)F,作DE⊥OB于點(diǎn)E,連接CD并延長(zhǎng)CD交x軸于點(diǎn)M,
設(shè)反比例函數(shù)的解析式為,把點(diǎn)C(3,4)代入求得k=12,即;
∵四邊形ABOC是平行四邊形,
∴AC∥OB,OC∥AB,AC=OB,AB=OC,
∵C(3,4)
∴OF=3,CF=4,
在Rt△CFO中,根據(jù)勾股定理求得OC=5,
∴AB=5.
設(shè)AC=2a,則AD=a,OB=2a,
∴DB=5-a,
∵OC∥AB,
∴∠COF=∠DBE,
∵∠CFO=∠BED=90°,
∴△COF∽△DBE,023
∴,
∴,,
∴OE=,
∴D(,),
∵點(diǎn)D在反比例函數(shù)的圖象上,
∴·=12,
解得a=或a=0(舍去);
∴D(7, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元。物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克60元,不低于每千克30元。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷(xiāo)售量y(千克)是銷(xiāo)售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100。在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用450元。
(1)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍。
(2)求該公司銷(xiāo)售該原料日獲利w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式。
(3)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:在 中,、、三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為 ),在網(wǎng)格中畫(huà)出格點(diǎn) (即 三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示,這樣借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你直接寫(xiě)出 的面積為 .
(2)若三邊的長(zhǎng)分別為、、 運(yùn)用構(gòu)圖法求出這三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,進(jìn)行如下操作:①分別以點(diǎn)A和點(diǎn)C為圓心,以大于的長(zhǎng)為半徑作弧,兩弧分別相交于點(diǎn)M,N;②作直線(xiàn)MN,交線(xiàn)段AC于點(diǎn)D;③連接BD.則下列結(jié)論正確的是( )
A.BD平分∠ABCB.BD⊥ACC.AD=CDD.△ABD≌△CBD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用電腦程序控制小型賽車(chē)進(jìn)行比賽,“復(fù)興號(hào)”和“和諧號(hào)”兩輛賽車(chē)進(jìn)入了決賽.兩輛賽車(chē)從距離終點(diǎn)75米的某地同時(shí)出發(fā),“復(fù)興號(hào)”比“和諧號(hào)”早t秒到達(dá)終點(diǎn),且“復(fù)興號(hào)”的平均速度是“和諧號(hào)”的m倍.
(1)當(dāng)m=1.2,t=5時(shí),求“復(fù)興號(hào)”的平均速度是多少米/秒?
(2)“和諧號(hào)”的平均速度為 米/秒(用含m、t的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)三角形(用陰影表示).
(1)在圖(a)中,畫(huà)一個(gè)不含直角的三角形,使它的三邊長(zhǎng)都是有理數(shù);
(2)在圖(b)中,畫(huà)一個(gè)直角三角形,使它的斜邊長(zhǎng)為;
(3)在圖(c)中,畫(huà)一個(gè)直角三角形,使它的斜邊長(zhǎng)為5,直角邊長(zhǎng)都是無(wú)理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點(diǎn)A、點(diǎn)B,與X軸交于點(diǎn)C,其中點(diǎn)A(﹣1,3)和點(diǎn)B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數(shù)的解析式和△AOB的面積.
(3)根據(jù)圖象回答:當(dāng)x為何值時(shí),kx+b≥(請(qǐng)直接寫(xiě)出答案) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,1),C(﹣3,2),D(﹣1,2).
(1)在圖中畫(huà)出四邊形ABCD,并求出四邊形ABCD的面積;
(2)在圖中畫(huà)出四邊形ABCD關(guān)于x軸的對(duì)稱(chēng)圖形A1B1C1D1,并分別寫(xiě)出點(diǎn)A、C的對(duì)應(yīng)點(diǎn)A1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點(diǎn)P從A出發(fā),以每秒2厘米的速度向B運(yùn)動(dòng),點(diǎn)Q從C同時(shí)出發(fā),以每秒3厘米的速度向A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也相應(yīng)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t.
⑴用含t的代數(shù)式表示:AP= ,AQ= .
⑵當(dāng)以A,P,Q為頂點(diǎn)的三角形與△ABC相似時(shí),求運(yùn)動(dòng)時(shí)間是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com