【題目】如圖,點(diǎn)A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°.
(1)求∠BOC的度數(shù);
(2)求證:四邊形AOBC是菱形.
【答案】(1)∠BOC的度數(shù)為60°;(2)證明見解析.
【解析】
(1)根據(jù)垂徑定理得出,再利用圓周角定理得出∠BOC的度數(shù);
(2)根據(jù)等邊三角形的判定得出BC=BO=CO,進(jìn)而利用(1)中結(jié)論得出AO=BO=AC=BC,即可證明結(jié)論.
(1)∵點(diǎn)A、B、C、D都在⊙O上,OC⊥AB,
∴,
∵∠ADC=30°,
∴∠AOC=∠BOC=2∠ADC=60°,
∴∠BOC的度數(shù)為60°;
(2)證明:∵,
∴AC=BC,
AO=BO,
∵∠BOC的度數(shù)為60°,BO=CO
∴△BOC為等邊三角形,
∴BC=BO=CO,
∴AO=BO=AC=BC,
∴四邊形AOBC是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E為AB邊上一點(diǎn),EC平分∠DEB,F為CE的中點(diǎn),連接AF,BF,過點(diǎn)E作EH∥BC分別交AF,CD于G,H兩點(diǎn).
(1)求證:DE=DC;
(2)求證:AF⊥BF;
(3)當(dāng)AFGF=28時(shí),請(qǐng)直接寫出CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,建筑物AB的高為52米,在其正前方廣場(chǎng)上有人進(jìn)行航模試飛.從建筑物頂端A處測(cè)得航模C的俯角α=30°,同一時(shí)刻從建筑物的底端B處測(cè)得航模C的仰角β=45°,求此時(shí)航模C的飛行高度.(精確到1米)(參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】、兩組卡片共張,中三張分別寫有數(shù)字,,,中兩張分別寫有,.它們除了數(shù)字外沒有任何區(qū)別.
隨機(jī)地從中抽取一張,求抽到數(shù)字為的概率;
隨機(jī)地分別從、中各抽取一張,請(qǐng)你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
如果不公平請(qǐng)你修改游戲規(guī)則使游戲規(guī)則對(duì)甲乙雙方公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)同學(xué)做了一個(gè)數(shù)字游戲:拿出三張正面寫有數(shù)字,2,3且背面完全相同的卡片,將這三張卡片背面朝上洗勻后,甲先隨機(jī)抽取一張,將所得數(shù)字作為的值,然后將卡片放回并洗勻,乙再?gòu)倪@三張卡片中隨機(jī)抽取一張,將所得數(shù)字作為的值,兩次結(jié)果記為.
(1)請(qǐng)你幫他們用畫樹狀圖或列表的方法表示所有可能出現(xiàn)的結(jié)果;
(2)若將記錄結(jié)果看成平面直角坐標(biāo)系中的一點(diǎn),求是第一象限內(nèi)的點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于點(diǎn)O,點(diǎn)P、D分別在AO和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.
理清思路,本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完成下列問題.
(1)若BP平分∠ABO,其余條件不變.求證:AP=CD.
(2)若點(diǎn)P是一個(gè)動(dòng)點(diǎn),點(diǎn)P運(yùn)動(dòng)到OC的中點(diǎn)P′時(shí),滿足題中條件的點(diǎn)D也隨之在直線BC上運(yùn)動(dòng)到點(diǎn)D′,請(qǐng)直接寫出CD′與AP′的數(shù)量關(guān)系,并證明得出的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】3月5日是學(xué)雷鋒日,也是中國(guó)青年志愿者服務(wù)日.今年3月5日,某中學(xué)組織全體學(xué)生參加了“青年志愿者”活動(dòng),活動(dòng)分為“打掃街道(記為A)”“去敬老院服務(wù)(記為B)”“到社區(qū)文藝演出(記為C)”三項(xiàng).
(1)八年級(jí)計(jì)劃在3月5日這天隨機(jī)完成“青年志愿者”活動(dòng)中的一項(xiàng),求八年級(jí)完成的恰好是“去敬老院服務(wù)”的概率;
(2)九年級(jí)計(jì)劃在3月5日這天隨機(jī)完成“青年志愿者”活動(dòng)中的兩項(xiàng),請(qǐng)用列表或畫樹狀圖法求九年級(jí)完成的恰好是“打掃街道”和“去敬老院服務(wù)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(h為常數(shù)),在自變量的值滿足的情況下,與其對(duì)應(yīng)的函數(shù)值的最大值為0,則的值為( )
A. 和B. 和C. 和D. 和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com