【題目】有這樣一個(gè)問(wèn)題:探究同一坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)的圖象性質(zhì)小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)這兩個(gè)函數(shù)當(dāng)時(shí)的圖象性質(zhì)進(jìn)行了探究設(shè)函數(shù)圖象的交點(diǎn)為A、下面是小明的探究過(guò)程:

1)如圖所示,若已知A的坐標(biāo)為,則B點(diǎn)的坐標(biāo)為______

2)若A的坐標(biāo)為P點(diǎn)為第一象限內(nèi)雙曲線上不同于點(diǎn)B的任意一點(diǎn).

①設(shè)直線PAx軸于點(diǎn)M,直線PBx軸于點(diǎn)求證:

證明過(guò)程如下:設(shè),直線PA的解析式為

解得

所以,直線PA的解析式為______

請(qǐng)把上面的解答過(guò)程補(bǔ)充完整,并完成剩余的證明.

②當(dāng)P點(diǎn)坐標(biāo)為時(shí),判斷的形狀,并用k表示出的面積.

【答案】(1) ;(2)①,;②直角三角形,.

【解析】

1)根據(jù)正、反比例函數(shù)圖象的對(duì)稱性結(jié)合點(diǎn)A的坐標(biāo)即可得出點(diǎn)B的坐標(biāo);

2)①設(shè)Pm,),根據(jù)點(diǎn)P、A的坐標(biāo)利用待定系數(shù)法可求出直線PA的解析式,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)M的坐標(biāo),過(guò)點(diǎn)PPHx軸于H,由點(diǎn)P的坐標(biāo)可得出點(diǎn)H的坐標(biāo),進(jìn)而即可求出MH的長(zhǎng)度,同理可得出HN的長(zhǎng)度,再根據(jù)等腰三角形的三線合一即可證出PM=PN;

②根據(jù)①結(jié)合PH、MH、NH的長(zhǎng)度,可得出△PAB為直角三角形,分k10k1兩種情況,利用分割圖形求面積法即可求出△PAB的面積.

解:(1)由正、反比例函數(shù)圖象的對(duì)稱性可知,點(diǎn)A、B關(guān)于原點(diǎn)O對(duì)稱,

點(diǎn)的坐標(biāo)為,

點(diǎn)的坐標(biāo)為

故答案為:

2)①證明過(guò)程如下,

設(shè),直線PA的解析式為

,

解得:

直線PA的解析式為

當(dāng)時(shí),,

點(diǎn)的坐標(biāo)為

過(guò)點(diǎn)P軸于H,如圖1所示,

點(diǎn)坐標(biāo)為,

點(diǎn)的坐標(biāo)為

同理可得:,

故答案為:,

②由(2)①可知,在中,,

為等腰三角形,且

當(dāng)P點(diǎn)坐標(biāo)為時(shí),

,

,,

,即

為直角三角形.

當(dāng)時(shí),如圖1

,

,

,

;

當(dāng)時(shí),

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測(cè)量城門大樓的高度,在點(diǎn)B處測(cè)得樓頂A的仰角為22°,他正對(duì)著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺(tái)D處,并測(cè)得此時(shí)樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請(qǐng)你求出A,B之間所掛彩旗的長(zhǎng)度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)AB,C的坐標(biāo)分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將ABC繞原點(diǎn)O旋轉(zhuǎn)180度得到A1B1C1.平移ABC得到A2B2C2,使點(diǎn)A移動(dòng)到點(diǎn)A20,2),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

1)請(qǐng)畫出A1B1C1;

2)請(qǐng)直接寫出B2的坐標(biāo)   C2的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),延長(zhǎng)DEF,使得AFCD,連接BFCF

1)求證:四邊形AFCD是菱形;

2)當(dāng)AC4,BC3時(shí),求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程

1)請(qǐng)你為m選取一個(gè)合適的整數(shù),使得到的方程有兩個(gè)不相等的實(shí)數(shù)根;

2)設(shè)、中你所得到的方程的兩個(gè)實(shí)數(shù)根,求:的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小王在長(zhǎng)江邊某瞭望臺(tái)D處測(cè)得江面上的漁船A的俯角為40°,若DE3米,CE2米,CE平行于江面AB,迎水坡BC的坡度i10.75,坡長(zhǎng)BC10米,則此時(shí)AB的長(zhǎng)約為多少米?(結(jié)果精確到0.1,參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年以來(lái),我國(guó)持續(xù)大面積的霧霾天氣讓環(huán)保和健康問(wèn)題成為焦點(diǎn).為了調(diào)查學(xué)生對(duì)霧霾天氣知識(shí)的了解程度,某校在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個(gè)等級(jí):A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的三種統(tǒng)計(jì)圖表.

對(duì)霧霾了解程度的統(tǒng)計(jì)表:

對(duì)霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題.

(1)本次參與調(diào)查的學(xué)生共有   人,m=   ,n=   

(2)圖2所示的扇形統(tǒng)計(jì)圖中D部分扇形所對(duì)應(yīng)的圓心角是   度;

(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開(kāi)展關(guān)于霧霾知識(shí)競(jìng)賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設(shè)計(jì)了如下游戲來(lái)確定,具體規(guī)則是:把四個(gè)完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4,然后放到一個(gè)不透明的袋中,一個(gè)人先從袋中隨機(jī)摸出一個(gè)球,另一人再?gòu)氖O碌娜齻(gè)球中隨機(jī)摸出一個(gè)球.若摸出的兩個(gè)球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ?qǐng)用樹(shù)狀圖或列表法說(shuō)明這個(gè)游戲規(guī)則是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )

A. ①②③B. ①③C. ①④D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題1如圖①點(diǎn)A、B、C在⊙O上,且∠ABC=120°,⊙O的半徑是3.求弧AC的長(zhǎng).

問(wèn)題2如圖②點(diǎn)A、B、C、D在⊙上,且弧AD=BC,EAB的延長(zhǎng)線上的.

(1)設(shè)BD=nBF,則n=________;

(2)如圖③若G是線段BD上的一個(gè)點(diǎn),且.試探究,在⊙上是否存在點(diǎn)P (B除外)使PG=PF?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案