【題目】已知反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)P(﹣1,﹣1).
(1)求此函數(shù)的表達(dá)式;
(2)畫出此函數(shù)在第一象限內(nèi)的圖象.
(3)根據(jù)函數(shù)圖象寫出此函數(shù)的一條性質(zhì).

【答案】
(1)解:∵反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)P(﹣1,﹣1).

∴﹣1= ,解得k=1.

∴此函數(shù)的表達(dá)式為y=


(2)解:函數(shù)在第一象限內(nèi)的圖象如圖:


(3)解:函數(shù)在第一象限,y隨x的增大而減小
【解析】(1)直接把點(diǎn)P(﹣1,﹣1)代入反比例函數(shù)y= ,利用待定系數(shù)法求得即可;(2)根據(jù)反比例函數(shù)的解析式,然后作出其圖象即可;(3)根據(jù)圖象結(jié)合反比例函數(shù)的性質(zhì)即可求解.
【考點(diǎn)精析】關(guān)于本題考查的反比例函數(shù)的圖象,需要了解反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程3x2-4x=2的根是(    )
A.x1=-2,x2=1
B.x1= ,x2=
C.x1= ,x2=
D.x1= ,x2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在五邊形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD邊的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā),按A→B→C→M的順序運(yùn)動(dòng).設(shè)點(diǎn)P經(jīng)過(guò)的路程x為自變量,△APM的面積為y,則函數(shù)y的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)F.
求證:BF=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,E為平面內(nèi)任意一點(diǎn),連結(jié)DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DG,連結(jié)EC,AG.

(1)當(dāng)點(diǎn)E在正方形ABCD內(nèi)部時(shí),
①依題意補(bǔ)全圖形;
②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.
(2)當(dāng)點(diǎn)B,D,G在一條直線時(shí),若AD=4,DG= ,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,D是BC邊上的點(diǎn)(不與點(diǎn)B、C重合),連結(jié)AD.
(1)如圖1,當(dāng)點(diǎn)D是BC邊上的中點(diǎn)時(shí),SABD:SACD=
(2)如圖2,當(dāng)AD是∠BAC的平分線時(shí),若AB=m,AC=n,求SABD:SACD的值(用含m,n的代數(shù)式表示)
(3)如圖3,AD平分∠BAC,延長(zhǎng)AD到E,使得AD=DE,連接BE,如果AC=2,AB=4,SBDE=6,那么SABC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測(cè)量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,菱形OABC的面積為12,點(diǎn)B在y軸上,點(diǎn)C在反比例函數(shù)y= 的圖象上,則k的值為(
A.3
B.﹣3
C.6
D.﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM、ON上滑動(dòng),下列結(jié)論:
①若C、O兩點(diǎn)關(guān)于AB對(duì)稱,則OA=2 ;
②C、O兩點(diǎn)距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長(zhǎng)為 ;
其中正確的是(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案