【題目】小明和同桌小聰在課后復習時,對課本“目標與評定”中的一道思考題,進行了認真的探索.
【思考題】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時B到墻C的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點B將向外移動多少米?
(1)請你將小明對“思考題”的解答補充完整: 解:設點B將向外移動x米,即BB1=x,
則B1C=x+0.7,A1C=AC﹣AA1= ﹣0.4=2
而A1B1=2.5,在Rt△A1B1C中,由 得方程 ,
解方程得x1= , x2= ,
∴點B將向外移動米.
(2)解完“思考題”后,小聰提出了如下兩個問題: 【問題一】在“思考題”中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?
【問題二】在“思考題”中,梯子的頂端從A處沿墻AC下滑的距離與點B向外移動的距離,有可能相等嗎?為什么?
請你解答小聰提出的這兩個問題.

【答案】
(1)(x+0.7)2+22=2.52;0.8;﹣2.2(舍去);0.8
(2)解:①不會是0.9米,

若AA1=BB1=0.9米,則A1C=2.4米﹣0.9米=1.5米,B1C=0.7米+0.9米=1.6米,

1.52+1.62=4.81,2.52=6.25

∴該題的答案不會是0.9米.

②有可能.

設梯子頂端從A處下滑x米,點B向外也移動x米,

則有(x+0.7)2+(2.4﹣x)2=2.52,

解得:x1=1.7或x2=0(舍)

∴當梯子頂端從A處下滑1.7米時,點B向外也移動1.7米,即梯子頂端從A處沿墻AC下滑的距離與點B向外移動的距離有可能相等


【解析】(1)直接把B1C、A1C、A1B1的值代入進行解答即可;(2)把(1)中的0.4換成0.9可知原方程不成立;設梯子頂端從A處下滑x米,點B向外也移動x米代入(1)中方程,求出x的值符合題意.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】雷達二維平面定位的主要原理是:測量目標的兩個信息距離和角度,目標的表示方法為,其中,m表示目標與探測器的距離;表示以正東為始邊,逆時針旋轉后的角度.如圖,雷達探測器顯示在點A,B,C處有目標出現(xiàn),其中,目標A的位置表示為,目標C的位置表示為.用這種方法表示目標B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.

(1)如果AC=6cm,BC=8cm,試求△ACD的周長;

(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點MAB的中點,點PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結MDME.設AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在CBD中,CD=BD,CDBD,BE平分CBA交CD于點F,CEBE垂足是E,CE與BD交于點A.求證:

(1)BF=AC;

(2)BE是AC的中垂線;

(3)若AD=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線 y=x3 x 軸、y 軸分別交于點 A、B,線段 AB 為直角邊在第一內(nèi)作等腰 RtABC,∠BAC90. 點 P x 軸上的一個動點,設 P(x,0)

(1)x ______________時,PBPC 的值最小;

(2)x ______________時,|PBPC|的值最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=(2m+3x+m-1

1)若函數(shù)圖象經(jīng)過原點,求m的值;

2)若函數(shù)圖象與y軸上的的交點位于原點上方,求m的取值范圍;

3)若函數(shù)圖象平行于直線y=x+1,求m的值;

4)若該函數(shù)的值y隨自變量x的增大而減小,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平面直角坐標系中,A(0,4),B(0,2),點Cx軸上一點,點DOC的中點.

(1)求證:BD∥AC;

(2)若點Cx軸正半軸上,且BDAC的距離等于1,求點C的坐標;

(3)如果OE⊥AC于點E,當四邊形ABDE為平行四邊形時,求直線AC的解析式.

查看答案和解析>>

同步練習冊答案