精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2bx﹣3的對稱軸為直線x=2.

(1)求b的值;

(2)在y軸上有一動點P(0,m),過點P作垂直y軸的直線交拋物線于點A(x1,y1),B(x2,y2),其中x1<x2

當x2﹣x1=3時,結合函數圖象,求出m的值;

把直線PB下方的函數圖象,沿直線PB向上翻折,圖象的其余部分保持不變,得到一個新的圖象W,新圖象W在0≤x≤5時,﹣4≤y≤4,求m的取值范圍.

【答案】(1)b=2(2)①﹣②﹣4≤m≤﹣2

【解析】分析:(1)利用二次函數的對稱軸公式即可求出b值;

2①根據二次函數圖象的軸對稱性,即可得出答案;

②根據x、y的取值范圍,即可得m的取值范圍.

詳解:1∵拋物線的對稱軸為直線x =2,

b=2

2①∴拋物線的表達式為

Ax1,y),Bx2,y),

∴直線AB平行x軸.

,

AB=3

∵對稱軸為x =2,

AC=

∴當時,

②當y=m=-4時,0≤x≤5時, ;

y=m=-2時,0≤x≤5時, ;

m的取值范圍為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】問題情境:將一副直角三角板(Rt△ABCRt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,OAB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OMON的數量關系,并說明理由.

探究展示:小宇同學展示出如下正確的解法:

解:OM=ON,證明如下:

連接CO,則COAB邊上中線,

∵CA=CB,∴CO∠ACB的角平分線.(依據1

∵OM⊥AC,ON⊥BC∴OM=ON.(依據2

反思交流:

1)上述證明過程中的依據1”依據2”分別是指:

依據1

依據2

2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.

拓展延伸:

3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,FD的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數量關系與位置關系,并寫出證明過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,矩形OABC中,A10,0),C0,4),DOA的中點,PBC邊上一點.若△POD為等腰三角形,則所有滿足條件的點P的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是作已知角的角平分線”的尺規(guī)作圖過程.

已知:如圖1,MON

求作:射線OP,使它平分MON

作法:如圖2,

(1)以點O為圓心,任意長為半徑作弧,交OM于點A,交ON于點B;

(2)連結AB

(3)分別以點A,B為圓心,大于AB的長為半徑作弧,兩弧相交于點P;

(4)作射線OP

所以,射線OP即為所求作的射線.

請回答:該尺規(guī)作圖的依據是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以AB為直徑作O,過點AO的切線AC,連結BC,交O于點D,點EBC邊的中點,連結AE

(1)求證:∠AEB=2∠C;

(2)若AB=6,,求DE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數y1kx+by2=﹣4x+a的圖象如圖所示,且A04),C(﹣2,0).

1)由圖可知,不等式kx+b0的解集是   ;

2)若不等式kx+b>﹣4x+a的解集是x1

①求點B的坐標;

②求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中小學時期是學生身心變化最為明顯的時期,這個時期孩子們的身高變化呈現一定的趨勢,7~15歲期間生子們會經歷一個身高發(fā)育較迅速的階段,我們把這個年齡階段叫做生長速度峰值段,小明通過上網查閱《2016年某市兒童體格發(fā)育調查表》,了解某市男女生7~15歲身高平均值記錄情況,并繪制了如下統計圖,并得出以下結論:

10歲之前,同齡的女生的平均身高一般會略高于男生的平均身高;

②10~12歲之間,女生達到生長速度峰值段,身高可能超過同齡男生

7~15歲期間,男生的平均身高始終高于女生的平均身高

④13~15歲男生身高出現生長速度峰值段,男女生身高差距可能逐漸加大.

以上結論正確的是(

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數是甲工程隊單獨完成修路任務所需天數的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.

1)將圖1中的三角尺繞著點O逆時針旋轉90°,如圖2所示,此時∠BOM ;在圖2中,OM是否平分∠CON?請說明理由;

2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉到圖3的位置所示,使得ON在∠AOC的內部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數量關系,并說明理由;

3)將圖1中的三角板繞點O按每2的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為 (直接寫出結果)

查看答案和解析>>

同步練習冊答案