精英家教網 > 初中數學 > 題目詳情
(2009•涼山州)如圖,已知拋物線y=x2+bx+c經過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置,將拋物線沿y軸平移后經過點C,求平移后所得圖象的函數關系式;
(3)設(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

【答案】分析:(1)利用待定系數法,將點A,B的坐標代入解析式即可求得;
(2)根據旋轉的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋轉后C點的坐標為(3,1),當x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;
(3)首先求得B1,D1的坐標,根據圖形分別求得即可,要注意利用方程思想.
解答:解:(1)已知拋物線y=x2+bx+c經過A(1,0),B(0,2),
,
解得,
∴所求拋物線的解析式為y=x2-3x+2;(2分)

(2)∵A(1,0),B(0,2),
∴OA=1,OB=2,
可得旋轉后C點的坐標為(3,1),(3分)
當x=3時,由y=x2-3x+2得y=2,
可知拋物線y=x2-3x+2過點(3,2),
∴將原拋物線沿y軸向下平移1個單位后過點C.
∴平移后的拋物線解析式為:y=x2-3x+1;(5分)

(3)∵點N在y=x2-3x+1上,可設N點坐標為(x,x2-3x+1),
將y=x2-3x+1配方得y=(x-2-,
∴其對稱軸為直線x=.(6分)
①0≤x時,如圖①,


∵x=1,
此時x2-3x+1=-1,
∴N點的坐標為(1,-1).(8分)
②當時,如圖②,
同理可得,
∴x=3,
此時x2-3x+1=1,
∴點N的坐標為(3,1).
③當x<0時,由圖可知,N點不存在,
∴舍去.
綜上,點N的坐標為(1,-1)或(3,1).(10分)
點評:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯(lián)系密切,需要學生認真審題.
此題考查了二次函數與一次函數的綜合知識,解題的關鍵是要注意數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置,將拋物線沿y軸平移后經過點C,求平移后所得圖象的函數關系式;
(3)設(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數學 來源:2009年全國中考數學試題匯編《一次函數》(05)(解析版) 題型:解答題

(2009•涼山州)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市蕭山區(qū)中考數學模擬試卷13(黨灣鎮(zhèn)中 葉菁)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置,將拋物線沿y軸平移后經過點C,求平移后所得圖象的函數關系式;
(3)設(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標.

查看答案和解析>>

科目:初中數學 來源:2009年四川省涼山州中考數學試卷(解析版) 題型:解答題

(2009•涼山州)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

查看答案和解析>>

同步練習冊答案