【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;
(4)△A1B1C1與△A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標.
【答案】(1)作圖見解析;(2)作圖見解析;(3)作圖見解析;(4)(, )
【解析】
如下圖所示:
…… 4分
(3)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應(yīng)點的線段,作它的垂直平分線,或連接A1C1,A2C2的中點的連線為對稱軸.…… 2分
(4)成中心對稱,對稱中心為線段BB2的中點P,坐標是(,).…… 2分
(1)將三角形的各頂點,向x軸作垂線并延長相同長度得到三點的對應(yīng)點,順次連接;
(2)將三角形的各頂點,繞原點O按逆時針旋轉(zhuǎn)90°得到三點的對應(yīng)點.順次連接各對應(yīng)點得△A2B2C2;
(3)從圖中可發(fā)現(xiàn)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應(yīng)點的線段,做它的垂直平分線;
(4)成中心對稱圖形,畫出兩條對應(yīng)點的連線,交點就是對稱中心.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點為D,其圖象與x軸的交于點A、B,與y軸負半軸交于點C,且方程的兩根是-1和3.在下面結(jié)論中:①abc>0;②a+b+c<0;③c+3a=0;④若點M(,m)在此拋物線上,則m小于c.正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形中,,點是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨點的位置變化而變化.
(1)如圖1,當點在菱形內(nèi)部或邊上時,連接,與的數(shù)量關(guān)系是 ,與的位置關(guān)系是 ;
(2)當點在菱形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,
請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).
(3) 如圖4,當點在線段的延長線上時,連接,若 , ,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個等腰三角形和拼合在一起,其中,,.
(1)操作發(fā)現(xiàn)
如圖2,固定,把繞著頂點旋轉(zhuǎn),使點落在邊上.
填空:線段與的關(guān)系是①位置關(guān)系:______;②數(shù)量關(guān)系:______
(2)變式探究
當繞點旋轉(zhuǎn)到圖3的位置時,(1)中的結(jié)論還成立嗎?請說明理由;
(3)解決問題
如圖4,已知線段,線段,以為邊作一個正方形,連接,隨著邊的變化,線段的長也會發(fā)生變化.請直接寫出線段的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O為等邊△ABC的外接圓,其半徑為1,P為弧AB上的動點(P點不與A、B重合),連接AP,BP,CP.
(1)求證:PA+PB=PC.
(2)求四邊形APBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副撲克牌中的張黑桃牌(它們的正面牌面數(shù)字分別是、、)洗勻后正面朝下放在桌面上.
(1)如果從中隨機抽取一張牌,那么牌面數(shù)字是的概率是多少?
(2)小王和小李玩摸牌游戲,游戲規(guī)則如下:先由小王隨機抽出一張牌,記下牌面數(shù)字后放回,洗勻后正面朝下,再由小李隨機抽出一張牌,記下牌面數(shù)字.當張牌面數(shù)字相同時,小王贏;當張牌面數(shù)字不相同時,則小李贏.現(xiàn)請你利用樹形圖或列表法分析游戲規(guī)則對雙方是否公平?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為8的等邊△BCD中,DF⊥BC于點F,點A為射線DF上一動點,以B為旋轉(zhuǎn)中心,把BA順時針方向旋轉(zhuǎn)60°至BE,連接EC.
(1)當點A在線段DF的延長線上時,求證:DA=CE;
(2)當∠DEC=45°時,連接AC,求四邊形ABDC的面積;
(3)連接EF,當EF取得最小值時,線段AB的長是多少?(只寫答案,不要過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,點D是等邊三角形ABC的外接圓上的一點,過點D作圓的切線,交BC的延長線于F.
(1)用尺規(guī)作圖,作出等邊三角形ABC外接圓的圓心O;
(2)若⊙O的半徑為2,∠F=45°,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com