【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,點(diǎn)D為AC邊上的動(dòng)點(diǎn),點(diǎn)D從點(diǎn)C出發(fā),沿邊CA往A運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)A時(shí)停止,若設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒,點(diǎn)D運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度
(1)當(dāng)t=2時(shí),CD=______,AD=______;(請(qǐng)直接寫(xiě)出答案)
(2)當(dāng)△CBD是直角三角形時(shí),t=______;(請(qǐng)直接寫(xiě)出答案)
(3)求當(dāng)t為何值時(shí),△CBD是等腰三角形?并說(shuō)明理由.
【答案】(1)CD=2,AD=8;(2) t=3.6或10秒;(3)t=5秒或6秒或7.2秒時(shí),△CBD是等腰三角形,理由見(jiàn)解析
【解析】
(1)根據(jù)CD=速度×時(shí)間列式計(jì)算即可得解,利用勾股定理列式求出AC,再根據(jù)AD=AC-CD代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(2)分①∠CDB=90°時(shí),利用△ABC的面積列式計(jì)算即可求出BD,然后利用勾股定理列式求解得到CD,再根據(jù)時(shí)間=路程÷速度計(jì)算;②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,然后根據(jù)時(shí)間=路程÷速度計(jì)算即可得解;
(3)分①CD=BD時(shí),過(guò)點(diǎn)D作DE⊥BC于E,根據(jù)等腰三角形三線合一的性質(zhì)可得CE=BE,從而得到CD=AD;②CD=BC時(shí),CD=6;③BD=BC時(shí),過(guò)點(diǎn)B作BF⊥AC于F,根據(jù)等腰三角形三線合一的性質(zhì)可得CD=2CF,再由(2)的結(jié)論解答.
(1)t=2時(shí),CD=2×1=2,
∵∠ABC=90°,AB=8,BC=6,
∴AC==10,
AD=AC-CD=10-2=8;
(2)①∠CDB=90°時(shí),S△ABC=ACBD=ABBC,
即×10BD=×8×6,
解得BD=4.8,
∴CD==3.6,
t=3.6÷1=3.6秒;
②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,
t=10÷1=10秒,
綜上所述,t=3.6或10秒;
故答案為:(1)2,8;(2)3.6或10秒;
(3)①CD=BD時(shí),如圖1,過(guò)點(diǎn)D作DE⊥BC于E,
則CE=BE,
∴CD=AD=AC=×10=5,
t=5÷1=5;
②CD=BC時(shí),CD=6,t=6÷1=6;
③BD=BC時(shí),如圖2,過(guò)點(diǎn)B作BF⊥AC于F,
則CF=3.6,
CD=2CF=3.6×2=7.2,
∴t=7.2÷1=7.2,
綜上所述,t=5秒或6秒或7.2秒時(shí),△CBD是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】星光櫥具店購(gòu)進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售,其進(jìn)價(jià)與售價(jià)如表:
進(jìn)價(jià)(元/臺(tái)) | 售價(jià)(元/臺(tái)) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購(gòu)進(jìn)這兩種電器共30臺(tái),用去了5600元,并且全部售完,問(wèn)櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場(chǎng)需求,二季度櫥具店決定用不超過(guò)9000元的資金采購(gòu)電飯煲和電壓鍋共50臺(tái),且電飯煲的數(shù)量不少于電壓鍋的 ,問(wèn)櫥具店有哪幾種進(jìn)貨方案?并說(shuō)明理由;
(3)在(2)的條件下,請(qǐng)你通過(guò)計(jì)算判斷,哪種進(jìn)貨方案櫥具店賺錢最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)到距離A地350千米的B地辦事,甲先出發(fā),乙后出發(fā),甲、乙兩人距A地的路程和時(shí)間的關(guān)系如圖所示,根據(jù)圖示提供的信息解答:
乙比甲晚______小時(shí)出發(fā);乙出發(fā)______小時(shí)后追上甲;
分別求甲、乙兩人離開(kāi)A地的路程s關(guān)于t的函數(shù)關(guān)系式;
求乙比甲早幾小時(shí)到達(dá)B地?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行“行動(dòng)起來(lái),對(duì)抗霧霾”為主題的植樹(shù)活動(dòng),某街道積極響應(yīng),決定對(duì)該街道進(jìn)行綠化改造,共購(gòu)進(jìn)甲、乙兩種樹(shù)共500棵,已知甲樹(shù)每棵800元,乙樹(shù)每棵1200元.
(1)若購(gòu)買兩種樹(shù)總金額為560000元,求甲、乙兩種樹(shù)各購(gòu)買了多少棵?
(2)若購(gòu)買甲樹(shù)的金額不少于購(gòu)買乙樹(shù)的金額,至少應(yīng)購(gòu)買甲樹(shù)多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D.
試說(shuō)明:AC∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,已知,其中滿足.
(1)填空: = _____ , = _____ ;
(2)如果在第三象限內(nèi)一點(diǎn),請(qǐng)用含的式子表示⊿的面積;
(3)若⑵條件下,當(dāng)時(shí),在坐標(biāo)軸上一點(diǎn),使得⊿的面積與⊿的面積相等,請(qǐng)求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)在全校學(xué)生中開(kāi)展了“地球﹣我們的家園”為主題的環(huán)保征文比賽,評(píng)選出一、二、三等獎(jiǎng)和優(yōu)秀獎(jiǎng),根據(jù)獎(jiǎng)項(xiàng)的情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)該校獲獎(jiǎng)的總?cè)藬?shù)為 , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求在扇形統(tǒng)計(jì)圖中表示“二等獎(jiǎng)”的扇形的圓心角的度數(shù);
(3)獲得一等獎(jiǎng)的4名學(xué)生中有3男1女,現(xiàn)打算從中隨機(jī)選出2名學(xué)生參加頒獎(jiǎng)活動(dòng),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示),
(1)折疊紙面,使表示的點(diǎn)1與-1重合,則-2表示的點(diǎn)與 表示的點(diǎn)重合;
(2)折疊紙面,使-1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問(wèn)題:
① 5表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
②表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
③若數(shù)軸上A、B兩點(diǎn)之間距離為9(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,此時(shí)點(diǎn)A表示的數(shù)是 、點(diǎn)B表示的數(shù)是 .
(3)已知在數(shù)軸上點(diǎn)A表示的數(shù)是a,點(diǎn)A移動(dòng)4個(gè)單位,此時(shí)點(diǎn)A表示的數(shù)和a是互為相反數(shù),求a的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com