【題目】如果(m1x2+2x30是一元二次方程,則m的取值范圍為_____

【答案】m1

【解析】

一元二次方程有三個(gè)特點(diǎn):(1)只含有一個(gè)未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.

解:(m1x2+2x30是一元二次方程,得

m1

故答案為:m1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016重慶市第26題)如圖1,二次函數(shù)的圖象與一次函數(shù)y=kx+b(k0)的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B在第一象限內(nèi),點(diǎn)C是二次函數(shù)圖象的頂點(diǎn),點(diǎn)M是一次函數(shù)y=kx+b(k0)的圖象與x軸的交點(diǎn),過(guò)點(diǎn)B作x軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;

(2)點(diǎn)P是線段AB上一點(diǎn),點(diǎn)D是線段BC上一點(diǎn),PD//x軸,射線PD與拋物線交于點(diǎn)G,過(guò)點(diǎn)P作PEx軸于點(diǎn)E,PFBC于點(diǎn)F,當(dāng)PF與PE的乘積最大時(shí),在線段AB上找一點(diǎn)H(不與點(diǎn)A,點(diǎn)B重合),使GH+BH的值最小,求點(diǎn)H的坐標(biāo)和GH+BH的最小值;

(3)如圖2,直線AB上有一點(diǎn)K(3,4),將二次函數(shù)沿直線BC平移,平移的距離是t(t0),平移后拋物線使點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A,點(diǎn)C;當(dāng)ACK是直角三角形時(shí),求t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來(lái)的分式的同分母的分式,叫做分式的通分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)海洋權(quán)益,新組建的國(guó)家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國(guó)籍的船只停在C處海域。如圖所示,AB=60海里,在B處測(cè)得C在北偏東45的方向上,A處測(cè)得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測(cè)得AD=120海里。

(1)(4分)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號(hào))

(2)(5分)已知在燈塔D周?chē)?00海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤(pán)查,途中有無(wú)觸礁的危險(xiǎn)?(參考數(shù)據(jù):=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣y2n+1÷yn+1= ;[(﹣m)3]2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016云南省第22題)草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷(xiāo)售店在草莓銷(xiāo)售旺季,試銷(xiāo)售成本為每千克20元的草莓,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式(也稱關(guān)系式)

(2)設(shè)該水果銷(xiāo)售店試銷(xiāo)草莓獲得的利潤(rùn)為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCABC是位似圖形.ABC的面積為6 cm2,ABC的周長(zhǎng)是ABC的周長(zhǎng)一半.則ABC的面積等于(  )

A. 24 cm2 B. 12 cm2 C. 6 cm2 D. 3 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)觀察下面的正四面體、正六面體、正八面體,解決下列問(wèn)題:

⑴填空:

①正四面體的頂點(diǎn)數(shù)V ,面數(shù)F ,棱數(shù)E .

②正六面體的頂點(diǎn)數(shù)V ,面數(shù)F ,棱數(shù)E .

③正八面體的頂點(diǎn)數(shù)V ,面數(shù)F ,棱數(shù)E .

⑵若將多面體的頂點(diǎn)數(shù)用V表示,面數(shù)用F表示,棱數(shù)用E表示,則V、F、E之間的數(shù)量關(guān)系可用一個(gè)公式來(lái)表示,這就是著名的歐拉公式,請(qǐng)寫(xiě)出歐拉公式:

⑶如果一個(gè)多面體的棱數(shù)為30,頂點(diǎn)數(shù)為20,那么它有多少個(gè)面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣東省深圳市第23題)如圖,拋物線軸交于A、B兩點(diǎn),且B(1 , 0)。

(1)、求拋物線的解析式和點(diǎn)A的坐標(biāo);

(2)、如圖1,點(diǎn)P是直線上的動(dòng)點(diǎn),當(dāng)直線平分APB時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,已知直線 分別與 交于C、F兩點(diǎn)。點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作 軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長(zhǎng)線上,連接QE。問(wèn)以QD為腰的等腰QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案