【題目】1876年,美國總統(tǒng)Garfield用如圖所示的兩個(gè)全等的直角三角形證明了勾股定理,若圖中,,,則下面結(jié)論錯(cuò)誤的是( )
A. B. C. D. 是等腰直角三角形
【答案】C
【解析】
由全等三角形的性質(zhì)可得AB=EC=a,BE=CD=b,AE=DE,∠AEB=∠EDC,可求∠AED=90°,且AE=DE,即AE=DE=4,即可判斷各個(gè)選項(xiàng).
解:∵△ABE≌△ECD
∴AB=EC=a,BE=CD=b,AE=DE,∠AEB=∠EDC,
∵∠EDC+∠DEC=90°
∴∠AEB+∠DEC=90°
∴∠AED=90°,且AE=DE,
∴△ADE是等腰直角三角形,AE2+DE2=AD2=32,
∴AE=4=DE,
∴AB2+BE2=AE2,
∴a2+b2=16,
故A、B、D選項(xiàng)正確
∵S△ADE=AE×DE=8
故C選項(xiàng)錯(cuò)誤
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,0),與x軸的另一個(gè)交點(diǎn)在點(diǎn)(1,0)和(2,0)之間,對(duì)稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③a+c>0;④2a+c<0,其中正確的結(jié)論個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)C在線段AB上,AC=2BC,點(diǎn)D、E在直線AB上,點(diǎn)D在點(diǎn)E的左側(cè)
(1)若AB=18,DE=8,線段DE在線段AB上移動(dòng)
①如圖1,當(dāng)E為BC中點(diǎn)時(shí),求AD的長;
②點(diǎn)F(異于A,B,C點(diǎn))在線段AB上,AF=3AD,CE+EF=3,求AD的長;
(2)若AB=2DE,線段DE在直線AB上移動(dòng),且滿足關(guān)系式,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC,交AC于點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)求證:AF是⊙O的切線;
(2)已知⊙O的半徑為4,AF=3,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,是格點(diǎn)三角形,點(diǎn)的坐標(biāo)分別為,.
(1)在圖中畫出相應(yīng)的平面直角坐標(biāo)系;
(2)畫出關(guān)于直線對(duì)稱的,并標(biāo)出點(diǎn)的坐標(biāo);
(3)若點(diǎn)在內(nèi),其關(guān)于直線的對(duì)稱點(diǎn)是,則的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x+1與雙曲線y=相交于P(1,m),Q(-2,-1)兩點(diǎn).
(1)求m的值;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上三點(diǎn),且x1<x2<0<x3,請(qǐng)直接說明y1,y2,y3的大小關(guān)系;
(3)觀察圖象,請(qǐng)直接寫出不等式k1x+1>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠E=∠F,∠B=∠C,AE=AF,結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有( 。
A. 1個(gè)B. 2個(gè)
C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一個(gè)奇數(shù)是347,則m的值是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com