如圖,在△ABC中,∠ACB=90°,E為BC上一點(diǎn),以CE為直徑作⊙O,AB與⊙O相切于點(diǎn)D,連接CD,若BE=OE=2.
(1)求證:∠A=2∠DCB;
(2)求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).
解:(1)證明:連接OD,
∵AB是⊙O切線,∴∠ODB=90°。
∴BE=OE=OD=2。
∴∠B=30°,∠DOB=60°。
∵OD=OC,∴∠DCB=∠ODC=∠DOB=30°。
∵在△ABC中,∠ACB=90°,∠B=30°,
∴∠A=60°!唷螦=2∠DCB。
(2)∵∠ODB=90°,OD=2,BO=2+2=4,由勾股定理得:BD=2,
∴陰影部分的面積
【解析】
試題分析:(1)連接OD,求出∠ODB=90°,求出∠B=30°,∠DOB=60°,求出∠DCB度數(shù),關(guān)鍵三角形內(nèi)角和定理求出∠A,即可得出答案。
(2)根據(jù)勾股定理求出BD,分別求出△ODB和扇形DOE的度數(shù),即可得出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com