在平面直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(1,0),將點(diǎn)P0繞著原點(diǎn)按逆時針方向旋轉(zhuǎn)30°得到點(diǎn)P1,延長OP1,到點(diǎn)P2,使OP2=2OP1;再將點(diǎn)P2繞著原點(diǎn)按逆時針方向旋轉(zhuǎn)30°得到點(diǎn)P3,延長OP3,到P4,使OP4=2OP3;如此繼續(xù)下去,求:
(1)點(diǎn)P2的坐標(biāo);
(2)點(diǎn)P2010的坐標(biāo).
(1)設(shè)P2的坐標(biāo)為(x,y),作P2M⊥x軸,垂足為M.
∵OP2=2OP1=2OPO=2×1=2.∠P2OM=30°,
∴y=MP2=2sin30°=1,x=OM=2cos30°=
3
,
∴P2的坐標(biāo)為(
3
,1);

(2)∵OP2=21=2;OP4=22=4,
∴OP2010=21005
∵每24個點(diǎn)將轉(zhuǎn)一圈回到x軸,
∴2010÷24=24×83+18.
∴點(diǎn)P在y軸負(fù)半軸上.
∴P坐標(biāo)為(0,-21005).
∴P2010的坐標(biāo)是(0,-21005).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

下面圖案中,可以由一個基本圖案連續(xù)旋轉(zhuǎn)45°得到的是______(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,有四個圖案,他們繞中心旋轉(zhuǎn)一定的角度后能和原來的圖案相互重合,其中有一個圖案與其余三個圖案旋轉(zhuǎn)的度數(shù)不同,它是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,將稱為“基本圖形”,且各點(diǎn)的坐標(biāo)分別為A(4,4),B(1,3),C(3,3),D(3,1).
(1)畫出“基本圖形”關(guān)于原點(diǎn)O對稱的四邊形A1B1C1D1
(2)求四邊形A1B1C1D1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在計算機(jī)的白色屏幕上有一個矩形刷ABCD,AB=1,AD=
3
,以B為中心,按順時針方向轉(zhuǎn)到A′B′C′D′的位置,則這個畫刷著色的面積的值是( 。ㄗ⒔猓核^畫刷,是屏幕上的一個矩形塊,它在屏幕上移動或轉(zhuǎn)動時,它掃過的部位將改變顏色.)
A.
3
+
2
3
π
B.πC.
3
D.2π-
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

請閱讀下列材料:
問題:如圖1,在正方形ABCD和正方形CEFG中,點(diǎn)B、C、E在同一條直線上,M是線段AF的中點(diǎn),連接DM,MG.探究線段DM與MG數(shù)量與位置有何關(guān)系.

小聰同學(xué)的思路是:延長DM交GF于H,構(gòu)造全等三角形,經(jīng)過推理使問題得到解決.
請你參考小聰同學(xué)的思路,探究并解決下列問題:
(1)直接寫出上面問題中線段DM與MG數(shù)量與位置有何關(guān)系______;
(2)將圖1中的正方形CEFG繞點(diǎn)C順時針旋轉(zhuǎn),使正方形CEFG對角線CF恰好與正方形ABCD的邊BC在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的兩個結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明.
(3)如圖3,將正方形CEFG繞點(diǎn)C順時針旋轉(zhuǎn)任意角度,原問題中的其他條件不變,寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、(2)、(3)、(4)、…,那么第(7)個三角形的直角頂點(diǎn)的坐標(biāo)是______,第(2013)的直角頂點(diǎn)的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將點(diǎn)A(2
3
,0)繞著原點(diǎn)順時針方向旋轉(zhuǎn)60°得到點(diǎn)B,則點(diǎn)B的坐標(biāo)是( 。
A.(
3
,-3)
B.(
3
,3)
C.(3,-
3
D.(3,
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(-2,5)、B(-4,1)和C(-1,3).
(1)作出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)A,B,C的對稱點(diǎn)A1,B1,C1的坐標(biāo);
(2)作出△ABC關(guān)于原點(diǎn)O對稱的△A2B2C2,并寫出點(diǎn)A,B,C的對稱點(diǎn)A2,B2,C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案