【題目】已知,如圖1,AD是△ABC的角平分線,且AD=BD,

(1)求證:△CDA∽△CAB;

(2)若AD=6,CD=5,求AC的值;

(3)如圖2,延長(zhǎng)AD至E,使AE=AB,過(guò)E點(diǎn)作EF∥AB,交AC于點(diǎn)F,試探究線段EF

與線段AD的大小關(guān)系.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)根據(jù)角平分線的性質(zhì),得到∠BAD=CAD,再由等邊對(duì)等角得到∠BAD=ABD由等量代換得到∠CAD=∠B,即可得到結(jié)論

(2)由相似三角形對(duì)應(yīng)邊成比例即可得到結(jié)論;

(3)結(jié)論為EF=AD證明BADEAF即可

試題解析1)證明:∵ADABC的角平分線,∴∠BAD=CAD

AD=BD,∴∠BAD=ABD,∴∠CAD=∠B.∵C=∠C,CDA∽△CAB

(2)解:∵CDA∽△CAB, ,,∴,∴AC=

(3)答:EF= AD理由如下

EFAB,∴∠E=BAD.∵∠BAD=∠B,∴∠B=∠E

AE=AB,∠BAD=EAF,∴BADEAF,EF= AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為3的正三角形ABC放置在直線l上(AB與直線l重合),將正三角形ABC沿直線l向右做無(wú)滑動(dòng)的滾動(dòng),正三角形ABC的任意一邊與直線l重合時(shí)記錄滾動(dòng)次數(shù),例如,正三角形ABC由圖中位置①滾動(dòng)到位置②時(shí)記錄為滾動(dòng)一次,當(dāng)正三角形ABC由圖中位置①開(kāi)始滾動(dòng)2018次時(shí),點(diǎn)A經(jīng)過(guò)的路徑總長(zhǎng)度為(  )

A.2690πB.2692πC.4034πD.4036π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱(chēng)使等式 成立的一對(duì)有理數(shù),共生有理數(shù)對(duì),記為(,),如:數(shù)對(duì)(),(,),都是共生有理數(shù)對(duì)

1)數(shù)對(duì)(,),(,)中是共生有理數(shù)對(duì)嗎?說(shuō)明理由.

2)若(,)是共生有理數(shù)對(duì),則()是共生有理數(shù)對(duì)嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-21),B(-1,4),C(-3,3).

1)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到的△A1BC1.

2)以原點(diǎn)O為位似中心,位似比為2:1,在y軸的左側(cè),畫(huà)出將△ABC放大后的△A2B2C2,并寫(xiě)出A2點(diǎn)的坐標(biāo)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4),點(diǎn)B(m,-1),

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫(xiě)出不等式x+b>的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,AB=6AC=8.射線BD為∠ABC的平分線,交AC于點(diǎn)D.動(dòng)點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)B向終點(diǎn)C運(yùn)動(dòng).作PEBC交射線BD于點(diǎn)E.以PE為邊向右作正方形PEFG.正方形PEFG與△BDC重疊部分圖形的面積為S

1)求tanABD的值.

2)當(dāng)點(diǎn)F落在AC邊上時(shí),求t的值.

3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時(shí),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,解答問(wèn)題:如果一個(gè)四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個(gè)位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱(chēng)這個(gè)四位數(shù)依賴(lài)數(shù),例如,自然數(shù)2135,其中32×2152×2+1,所以2135依賴(lài)數(shù)

1)請(qǐng)直接寫(xiě)出最小的四位依賴(lài)數(shù);

2)若四位依賴(lài)數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結(jié)果除以73,這樣的數(shù)叫做特色數(shù),求所有特色數(shù).

3)已知一個(gè)大于1的正整數(shù)m可以分解成mpq+n4的形式(p≤q,n≤b,p,qn均為正整數(shù)),在m的所有表示結(jié)果中,當(dāng)nqnp取得最小時(shí),稱(chēng)“mpq+n4m最小分解,此時(shí)規(guī)定:Fm)=,例:201×4+242×2+241×19+14,因?yàn)?/span>1×191×12×42×12×22×2,所以F20)=1,求所有特色數(shù)Fm)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商店試銷(xiāo)一款成本為 50 元的排球,規(guī)定試銷(xiāo)期間單價(jià)不低于成本價(jià),且獲利不得高于 40%。經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量 (個(gè))與銷(xiāo)售單價(jià) (元)之間滿(mǎn)足如圖所示的一次函數(shù)關(guān)系.

1)試確定 之間的函數(shù)關(guān)系式;

2)若該體育用品商店試銷(xiāo)的這款排球所獲得的利潤(rùn)為 元,試寫(xiě)出利潤(rùn) (元)與銷(xiāo)售單價(jià) (元)之間的函數(shù)關(guān)系式;當(dāng)試銷(xiāo)單價(jià)定為多少元時(shí),該商店可獲最大利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,a,點(diǎn)B,點(diǎn)C的坐標(biāo)分別為(-b,0),(b0.

1)如圖,求點(diǎn)A,B,C的坐標(biāo);

2)如圖,若點(diǎn)D在第一象限且滿(mǎn)足AD=AC,∠DAC=90°,求BD

3)如圖,在(2)的條件下,若在第四象限有一點(diǎn)E,滿(mǎn)足∠BEC=BDC,請(qǐng)?zhí)骄?/span>BE,CEAE之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案