【題目】將一副三角板如圖1擺放在直線(xiàn)MN上,在三角板OAB和三角板OCD中,,,

保持三角板OCD不動(dòng),將三角板OAB繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)時(shí)間為t秒.

當(dāng)______秒時(shí),OB平分此時(shí)______;

當(dāng)三角板OAB旋轉(zhuǎn)至圖2的位置,此時(shí)有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

如圖3,若在三角板OAB開(kāi)始旋轉(zhuǎn)的同時(shí),另一個(gè)三角板OCD也繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),當(dāng)OB旋轉(zhuǎn)至射線(xiàn)OM上時(shí)同時(shí)停止.

當(dāng)t為何值時(shí),OB平分?

直接寫(xiě)出在旋轉(zhuǎn)過(guò)程中,之間的數(shù)量關(guān)系.

【答案】(1)①,(2)①2②當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),

【解析】

該小題是簡(jiǎn)單的旋轉(zhuǎn)問(wèn)題,結(jié)合圖1即可求得t的值及的關(guān)系

該小題第二問(wèn)涉及角的旋轉(zhuǎn)問(wèn)題,利用特殊角解決本題就好做多了

平分時(shí),根據(jù)角平分線(xiàn)的定義即可建立等量關(guān)系

,

當(dāng)時(shí),即

故答案為

由題意:,,

,

所以t2時(shí),OB平分

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一塊直角三角形的綠地,量得直角邊BC6cm,AC8cm,現(xiàn)在要將原綠地?cái)U(kuò)充后成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后的等腰三角形綠地的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)先化簡(jiǎn),再求值:( ,其中x= ﹣2.
(2)計(jì)算:|﹣4|+( 2﹣( ﹣1)0 cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,直線(xiàn)MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.

(1)求證:DE是⊙O的切線(xiàn);
(2)若DE=6cm,AE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D△ABC內(nèi)一點(diǎn),且BD=AD.

(1)求證:CD⊥AB;

(2)∠CAD=15°,EAD延長(zhǎng)線(xiàn)上的一點(diǎn),且CE=CA.

求證:DE平分∠BDC;

若點(diǎn)MDE上,且DC=DM,請(qǐng)判斷ME、BD的數(shù)量關(guān)系,并給出證明;

N為直線(xiàn)AE上一點(diǎn),且△CEN為等腰三角形,直接寫(xiě)出∠CNE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖所示的方式疊放在一起,當(dāng)∠ACE180°且點(diǎn)E在直線(xiàn)AC的上方時(shí),他發(fā)現(xiàn)若∠ACE_____,則三角板BCE有一條邊與斜邊AD平行.(寫(xiě)出所有可能情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)D,E分別是ABC的邊AB,AC的中點(diǎn).

(1)如圖1,點(diǎn)OABC內(nèi)的動(dòng)點(diǎn),點(diǎn)O,F分別是OB,OC的中點(diǎn),求證:DEFG是平行四邊形;

(2)如圖2,若BEDC于點(diǎn)O,請(qǐng)問(wèn)AO的延長(zhǎng)線(xiàn)經(jīng)過(guò)BC的中點(diǎn)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

當(dāng)均為正整數(shù)時(shí),若,用含m、n的式子分別表示,得   ,   

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖,在直角坐標(biāo)系xOy中,A(﹣1,0),B(3,0),將A,B同時(shí)分別向上平移2個(gè)單位,再向右平移1個(gè)單位,得到的對(duì)應(yīng)點(diǎn)分別為D,C,連接AD,BC.

(1)直接寫(xiě)出點(diǎn)C,D的坐標(biāo):C ,D

(2)四邊形ABCD的面積為 ;

(3)點(diǎn)P為線(xiàn)段BC上一動(dòng)點(diǎn)(不含端點(diǎn)),連接PD,PO.求證:∠CDP+BOP=OPD.

查看答案和解析>>

同步練習(xí)冊(cè)答案