如圖,直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(1,b).
(1)求b的值;
(2)不解關(guān)于x,y的方程組,請(qǐng)你直接寫出它的解;
(3)直線l3:y=nx+m是否也經(jīng)過點(diǎn)P?請(qǐng)說明理由.

【答案】分析:(1)把P點(diǎn)坐標(biāo)代入y=x+1即可算出b的值;
(2)兩函數(shù)圖象的交點(diǎn)就是方程組的解;
(3)根據(jù)直線y=mx+n過(1,2)點(diǎn)可得m+n=2,再把x=1,代入y=nx+m可得n+m=2,故直線y=nx+m也經(jīng)過點(diǎn)P.
解答:解:(1)∵(1,b)在直線y=x+1上,
∴當(dāng)x=1時(shí),b=1+1=2.

(2)解是;

(3)直線y=nx+m也經(jīng)過點(diǎn)P,
∵點(diǎn)P(1,2)在直線y=mx+n上,
∴m+n=2.
把x=1,代入y=nx+m,得n+m=2.
∴直線y=nx+m也經(jīng)過點(diǎn)P.
點(diǎn)評(píng):此題主要考查了方程組與函數(shù)的關(guān)系,關(guān)鍵是掌握方程組的解就是兩函數(shù)圖象的交點(diǎn),凡是函數(shù)圖象經(jīng)過的點(diǎn)必能滿足解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(a,3),則關(guān)于x的不等式x+1≥mx+n的解集為
x≥2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1、l2交于點(diǎn)A,試求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1:y=2x+4與l2:y=-x-5在同一平面角坐標(biāo)系中相交于點(diǎn)P,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1的解析表達(dá)式為y=
12
x+1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過定點(diǎn)A,B,直線l1精英家教網(wǎng)l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1,l2交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l1所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-2x+2.
(1)求點(diǎn)C的坐標(biāo)及直線l2所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求△ABC的面積;
(3)在直線l2上存在一點(diǎn)P,使得PB=PC,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案