若等邊三角形ABC的邊長為2
3
cm,以點A為圓心,以3cm為半徑作⊙A,則BC所在直線與⊙A的位置關(guān)系是
相切
相切
分析:求得等邊三角形的高后與半徑3比較即可確定直線與圓的位置關(guān)系.
解答:解:∵等邊三角形ABC的邊長為2
3
cm,
∴等邊三角形的高為:
(2
3
)2-(
3
)2
=3
∵以3cm為半徑作⊙A,
∴BC所在直線與⊙A的位置關(guān)系是相切,
故答案為:相切.
點評:考查了直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系.能夠綜合運用等腰三角形的性質(zhì)和勾股定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)等邊三角形ABC內(nèi)接于⊙0,連接OA,OB,OC,延長AO分別交BC于點P,
BC
于點D,連接BD,CD.
(1)判斷四邊形BDCO是哪一種特殊四邊形,并說明理由;
(2)若等邊三角形ABC的邊長6
3
cm
,求⊙0的半徑;
(3)在劣弧
BD
上有一點Q,請求出弓形BQD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥精英家教網(wǎng)BC,垂足為F
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若等邊三角形ABC的邊長為a,且三角形內(nèi)一點P到各邊的距離分別是ha,hb,hc,則ha+hb+hc=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若等邊三角形ABC的邊長是2cm,則△ABC的面積是
 
cm2

查看答案和解析>>

同步練習(xí)冊答案