【題目】如圖,在長度為1個(gè)單位長度的小正方形組成的正方形網(wǎng)格紙中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)求的面積;
(2)在圖中畫出與關(guān)于直線1成軸對稱的;
(3)在如圖所示網(wǎng)格紙中,以為一邊作與全等的三角形,可以作出多少個(gè)三角形與全等(不要超出網(wǎng)格紙的范圍).
【答案】(1)的面積=;(2)如圖,即為所作;見解析;(3)在的兩側(cè)可各作一個(gè)三角形與全等,2個(gè).
【解析】
(1)用一個(gè)矩形的面積分別減去3個(gè)直角三角形的面積可計(jì)算出△ABC的面積;
(2)分別作B、C兩點(diǎn)關(guān)于直線l的對稱點(diǎn),從而得到△A'B′C′;
(3)作點(diǎn)C關(guān)于直線AB的對稱點(diǎn)可得到與△ABC全等的三角形,或作點(diǎn)C關(guān)于AB的垂直平分線的對稱點(diǎn)得到與△ABC全等的三角形.
(1)的面積=;
(2)如圖,即為所作;
(3)在的兩側(cè)可各作一個(gè)三角形與全等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李購買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)單位:米,解答下列問題:
用含m,n的代數(shù)式表示地面的總面積S;
已知客廳面積是衛(wèi)生間面積的8倍,且衛(wèi)生間、臥室、廚房面積的和比客廳還少3平方米,如果鋪1平方米地磚的平均費(fèi)用為100元,那么小李鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某一路口某一時(shí)段的汽車流量,小明同學(xué)10天中在同一時(shí)段統(tǒng)計(jì)通過該路口的汽車數(shù)量(單位:輛),將統(tǒng)計(jì)結(jié)果繪制成如下折線統(tǒng)計(jì)圖:
由此估計(jì)一個(gè)月(30天)該時(shí)段通過該路口的汽車數(shù)量超過200輛的天數(shù)為( )
A.9
B.10
C.12
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,AB=3,點(diǎn)E在線段AB上,AE=1連結(jié)DE,DE的垂直平分線交DE于點(diǎn)P,交DC的延長線于點(diǎn)Q,PQ交BC于點(diǎn)G,連結(jié)EQ,EQ交BC于點(diǎn)F,連結(jié)GE.
(1)求證:△ADE∽△PQD;
(2)求線段CQ的長;
(3)求∠EGB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平分,且,D為延長線上的一點(diǎn),,過D作,垂足為G.下列結(jié)論:①;②;③;④,其中正確的是( )
A. ①②③B. ①③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)的立方根是______________.
(2)已知某正數(shù)的兩個(gè)平方根分別是a+3和2a-15,b的立方根是-2,則3a+b的算術(shù)平方根是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),點(diǎn)分別在軸的正半軸和x軸的正半軸上,的面積為,過點(diǎn)作直線軸.
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)是第一象限直線上一動(dòng)點(diǎn),連接.過點(diǎn)作,交軸于點(diǎn)D,設(shè)點(diǎn)的縱坐標(biāo)為,點(diǎn)的橫坐標(biāo)為,求與的關(guān)系式;
(3)在(2)的條件下,過點(diǎn)作直線,交軸于點(diǎn),交直線于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題的提出:n個(gè)平面最多可以把空間分割成多少個(gè)部分?
問題的轉(zhuǎn)化:由n上面問題比較復(fù)雜,所以我們先來研究跟它類似的一個(gè)較簡單的問題:
n條直線最多可以把平面分割成多少個(gè)部分?
如圖1,很明顯,平面中畫出1條直線時(shí),會(huì)得到1+1=2個(gè)部分;所以,1條直線最多可以把平面分割成2個(gè)部分;
如圖2,平面中畫出第2條直線時(shí),新增的一條直線與已知的1條直線最多有1個(gè)交點(diǎn),這個(gè)交點(diǎn)會(huì)把新增的這條直線分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2條直線最多可以把平面分割成4個(gè)部分;
如圖3,平面中畫出第3條直線時(shí),新增的一條直線與已知的2條直線最多有2個(gè)交點(diǎn),這2個(gè)交點(diǎn)會(huì)把新增的這條直線分成3部分,從而多出3個(gè)部分,即總共會(huì)得到1+1+2+3=7個(gè)部分,所以,3條直線最多可以把平面分割成7個(gè)部分;
平面中畫出第4條直線時(shí),新增的一條直線與已知的3條直線最多有3個(gè)交點(diǎn),這3個(gè)交點(diǎn)會(huì)把新增的這條直線分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+3+4=11個(gè)部分,所以,4條直線最多可以把平面分割成11個(gè)部分;…
(1)請你仿照前面的推導(dǎo)過程,寫出“5條直線最多可以把平面分割成多少個(gè)部分”的推導(dǎo)過程(只寫推導(dǎo)過程,不畫圖);
(2)根據(jù)遞推規(guī)律用n的代數(shù)式填空:n條直線最多可以把平面分割成個(gè)部分.
問題的解決:借助前面的研究,我們繼續(xù)開頭的問題;n個(gè)平面最多可以把空間分割成多少個(gè)部分?
首先,很明顯,空間中畫出1個(gè)平面時(shí),會(huì)得到1+1=2個(gè)部分;所以,1個(gè)平面最多可以把空間分割成2個(gè)部分;
空間中有2個(gè)平面時(shí),新增的一個(gè)平面與已知的1個(gè)平面最多有1條交線,這1條交線會(huì)把新增的這個(gè)平面最多分成2部分,從而多出2個(gè)部分,即總共會(huì)得到1+1+2=4個(gè)部分,所以,2個(gè)平面最多可以把空間分割成4個(gè)部分;
空間中有3個(gè)平面時(shí),新增的一個(gè)平面與已知的2個(gè)平面最多有2條交線,這2條交線會(huì)把新增的這個(gè)平面最多分成4部分,從而多出4個(gè)部分,即總共會(huì)得到1+1+2+4=8個(gè)部分,所以,3個(gè)平面最多可以把空間分割成8個(gè)部分;
空間中有4個(gè)平面時(shí),新增的一個(gè)平面與已知的3個(gè)平面最多有3條交線,這3條交線會(huì)把新增的這個(gè)平面最多分成7部分,從而多出7個(gè)部分,即總共會(huì)得到1+1+2+4+7=15個(gè)部分,所以,4個(gè)平面最多可以把空間分割成15個(gè)部分;
空間中有5個(gè)平面時(shí),新增的一個(gè)平面與已知的4個(gè)平面最多有4條交線,這4條交線會(huì)把新增的這個(gè)平面最多分成11部分,而從多出11個(gè)部分,即總共會(huì)得到1+1+2+4+7+11=26個(gè)部分,所以,5個(gè)平面最多可以把空間分割成26個(gè)部分;…
(3)請你仿照前面的推導(dǎo)過程,寫出“6個(gè)平面最多可以把空間分割成多少個(gè)部分?”的推導(dǎo)過程(只寫推導(dǎo)過程,不畫圖);
(4)根據(jù)遞推規(guī)律填寫結(jié)果:10個(gè)平面最多可以把空間分割成個(gè)部分;
(5)設(shè)n個(gè)平面最多可以把空間分割成Sn個(gè)部分,設(shè)n﹣1個(gè)平面最多可以把空間分割成Sn﹣1個(gè)部分,前面的遞推規(guī)律可以用Sn﹣1和n的代數(shù)式表示Sn;這個(gè)等式是Sn= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com