【題目】某專賣店有A,B兩種商品,已知在打折前,買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元,A,B兩種商品打相同折以后,某人買500件A商品和450件B商品一共比不打折少花1960元,計算打了多少折?

【答案】解:設(shè)打折前A商品的單價為x元/件、B商品的單價為y元/件, 根據(jù)題意得: ,
解得: ,
500×16+450×4=9800(元),
=0.8.
答:打了八折.
【解析】設(shè)打折前A商品的單價為x元/件、B商品的單價為y元/件,根據(jù)“買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出x、y的值,再算出打折前購買500件A商品和450件B商品所需錢數(shù),結(jié)合少花錢數(shù)即可求出折扣率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,點M,N分別在邊OA,OB上,OM= ,ON=3 ,點P,Q分別在邊OB,OA上運動,連接MP,PQ,QN,則MP+PQ+QN的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y= 圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣ >0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠B=30°,AB=AC,O是兩條對角線的交點,過點O作AC的垂線分別交邊AD,BC于點E,F(xiàn),點M是邊AB的一個三等分點,則△AOE與△BMF的面積比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,BC=12,矩形DEFG的頂點位于△ABC的邊上,設(shè)EF=x,S四邊形DEFG=y.

(1)填空:自變量x的取值范圍是;
(2)求出y與x的函數(shù)表達(dá)式;
(3)請描述y隨x的變化而變化的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y= 經(jīng)過ABCD的頂點B,D.點D的坐標(biāo)為(2,1),點A在y軸上,且AD∥x軸,SABCD=5.
(1)填空:點A的坐標(biāo)為;
(2)求雙曲線和AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣ x+1交y軸于點B,交x軸于點A,拋物線y=﹣ x2+bx+c經(jīng)過點B,與直線y=﹣ x+1交于點C(4,﹣2).

(1)求拋物線的解析式;
(2)如圖,橫坐標(biāo)為m的點M在直線BC上方的拋物線上,過點M作ME∥y軸交直線BC于點E,以ME為直徑的圓交直線BC于另一點D,當(dāng)點E在x軸上時,求△DEM的周長.
(3)將△AOB繞坐標(biāo)平面內(nèi)的某一點按順時針方向旋轉(zhuǎn)90°,得到△A1O1B1 , 點A,O,B的對應(yīng)點分別是點A1 , O1 , B1 , 若△A1O1B1的兩個頂點恰好落在拋物線上,請直接寫出點A1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,E、F分別是AD、BC的中點,CE、AF分別交BD于G、H兩點.

求證:
(1)四邊形AFCE是平行四邊形;
(2)證明:EG=FH.

查看答案和解析>>

同步練習(xí)冊答案