【題目】已知購買1個足球和1個籃球共需130元,購買2個足球和1個籃球共需180元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費用不超過4000元,問最多可買多少個籃球?
【答案】
(1)
【解答】解:設(shè)每個籃球x元,每個足球y元,
由題意得,,
解得:,
答:每個籃球80元,每個足球50元;
(2)
設(shè)買m個籃球,則購買(54﹣m)個足球,
由題意得,80m+50(54﹣m)≤4000,
解得:m≤,
∵m為整數(shù),
∴m最大取43,
答:最多可以買43個籃球.
【解析】(1)設(shè)每個籃球x元,每個足球y元,根據(jù)買1個籃球和2個足球共需180元,購買1個籃球和1個足球共需130元,列出方程組,求解即可;
(2)設(shè)買m個籃球,則購買(54﹣m)個足球,根據(jù)總價錢不超過4000元,列不等式求出x的最大整數(shù)解即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是圓O的直徑,AB、AD是圓O的弦,且AB=AD,連結(jié)BC、DC.
(1)求證:△ABC≌△ADC;
(2)延長AB、DC交于點E,若EC=5cm,BC=3cm,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD,下列結(jié)論中正確的有(填上所有正確結(jié)論的序號) ①GH∥DC;
②EG∥AD;
③EH=FG;
④當(dāng)∠ABC與∠DCB互余時,四邊形EFGH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A、B是拋物線y=ax2(a>0)上兩個不同的點,其中A在第二象限,B在第一象限,
(1)如圖1所示,當(dāng)直線AB與x軸平行,∠AOB=90°,且AB=2時,求此拋物線的解析式和A、B兩點的橫坐標(biāo)的乘積.
(2)如圖2所示,在1所求得的拋物線上,當(dāng)直線AB與x軸不平行,∠AOB仍為90°時,A、B兩點的橫坐標(biāo)的乘積是否為常數(shù)?如果是,請給予證明;如果不是,請說明理由.
(3)在2的條件下,若直線y=﹣2x﹣2分別交直線AB,y軸于點P、C,直線AB交y軸于點D,且∠BPC=∠OCP,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=(x2﹣7x+6)的頂點坐標(biāo)為M,與x軸相交于A,B兩點(點B在點A的右側(cè)),與y軸相交于點C.
(1)用配方法將拋物線的解析式化為頂點式:y=a(x﹣h)2+k(a≠0),并指出頂點M的坐標(biāo);
(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標(biāo);
(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,AC平分∠BAD,AD⊥DC,垂足為D,OE⊥AC,垂足為E.
(1)求證:DC是⊙O的切線;
(2)若OE=cm,AC=cm,求DC的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是⊙O的直徑,AD是⊙O的切線,切點為D,AD與CB的延長線交于點A,∠C=30°,給出下面四個結(jié)論:
①AD=DC;②AB=BD;③AB=BC;④BD=CD, 其中正確的個數(shù)為( 。
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若在“正三角形、平行四邊形、菱形、正五邊形、正六邊形”這五種圖形中隨機抽取一種圖形,則抽到的圖形屬于中心對稱圖形的概率是( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com