【題目】如圖,在ABCD中,E,F分別是邊AB,CD的中點,求證:AFCE

【答案】見解析.

【解析】

方法一:先根據(jù)平行四邊形的性質及中點的定義得出AE=FC,AEFC,再根據(jù)一組對邊平行且相等的四邊形是平行四邊形證出四邊形AECF是平行四邊形,然后根據(jù)平行四邊形的對邊相等得出AF=CE
方法二:先利用邊角邊證明ADF≌△CBE,再根據(jù)全等三角形的對應邊相等得出AF=CE

證明:(證法一):

∵四邊形ABCD為平行四邊形,

ABCD,ABCD

又∵E、FAB、CD的中點,

AEAB,CFCD,

AECF,AECF,

∴四邊形AECF是平行四邊形,

AFCE

(證法二):

∵四邊形ABCD為平行四邊形,

ABCD,ADBC,∠B=∠D,

又∵EFAB、CD的中點,

BEAB,DFCD,

BEDF,

∴△ADF≌△CBESAS),

AFCE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B在一直線上,小明從點A出發(fā)沿AB方向勻速前進,4秒后走到點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)沿AB方向以同樣的速度勻速前進4秒后到點F,此時他(EF)的影長為2米,然后他再沿AB方向以同樣的速度勻速前進2秒后達點H,此時他(GH)處于燈光正下方.

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

(2)求小明沿AB方向勻速前進的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,將點A翻折到對角線BD上的點M處,折痕BEAD于點E.將點C翻折到對角線BD上的點N處,折痕DFBC于點F

1)求證:四邊形BFDE為平行四邊形;

2)若四邊形BFDE為菱形,且AB2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩臺機床同時生產(chǎn)一種零件,在5天中,兩臺機床每天出次品的數(shù)量如下表:

0

1

2

0

2

2

1

0

1

1

關于以上數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差,說法不正確的是

A. 甲、乙的平均數(shù)相等B. 甲、乙的眾數(shù)相等

C. 甲、乙的中位數(shù)相等D. 甲的方差大于乙的方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形的內切圓的切點將該圓周分為5:9:10三條弧,則此三角形的最小的內角為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠CAB30°, AC4.5cm M是邊AC上的一個動點,連接MB,過點MMB的垂線交AB于點N AM=x cmAN=y cm.(當點M與點A或點C重合時,y的值為0

探究函數(shù)y隨自變量x的變化而變化的規(guī)律.

1 通過取點、畫圖、測量,得到了xy的幾組對應值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

y/cm

0

0.4

0.8

1.2

1.6

1.7

1.6

1.2

0

(要求:補全表格,相關數(shù)值保留一位小數(shù))

2)建立平面直角坐標系xOy,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

3)結合畫出的函數(shù)圖象,解決問題:當AN=AM時,AM的長度約為 cm(結果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DEAB,過點EEFDE,交BC的延長線于點F

1)求∠F的度數(shù);

2)若CD4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠ABC=30°,將ABC繞點C順時針旋轉至A′B′C,使得點A′恰好落在AB上,則旋轉角度為( 。

A.30°B.60°C.90°D.150°

查看答案和解析>>

同步練習冊答案