如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(-2,4),AB=2BO,將△ABO 繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O 。
(1)分別寫出A1、B1的坐標(biāo);
(2)連結(jié)BB1交A1O于點(diǎn)M,求點(diǎn)M的坐標(biāo);
(3)求△A1BB1的面積。
(1)過點(diǎn)B作BD⊥x軸于D,∵點(diǎn)B(-2,4),OD=2,BD=4,
∴OB==
     ∵AB=2BO=   ∴OA=10,
       ∵△ABO 繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,
       ∴A1的坐標(biāo)為(0,10),∠BOB1=90°,過點(diǎn)B1作B1E⊥x軸于E,
      易證△BOD≌△OB1E∴OE=BD=4,B1E=OD=2 ∴B1的坐標(biāo)為(4,2);
(2)設(shè)過B、B1的直線的解析式為,
解之
   ∴直線BB1的解析式為 ∵點(diǎn)M在軸上,
∴把代入
 ∴點(diǎn)M的坐標(biāo)為(0,) ;
(3)∵A1的坐標(biāo)為(0,10),M的坐標(biāo)為(0,)  ∴A1M=, 
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案