【題目】據(jù)說我國著名數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題: 一個數(shù)是 59319,希望求出它的立方根.華羅庚脫口而出:39. 鄰座的乘客十分驚奇,忙問計算的奧妙. 你知道華羅庚是怎樣計算的嗎?請按照下面的問題試一試:
(1)由,試確定 是 __________位數(shù);
(2)由 19683 個位數(shù)是 3,試確定 個位數(shù)是 ________________;
(3)如果劃去 19683 后面的三位數(shù) 683 得到數(shù) 19 ,而 ,由此你能確定十位 的數(shù)字是___________ ;
(4) 用上述方法確定 110592 的立方根是_______________ .
【答案】兩 7 2 48
【解析】
(1)由19683大于1000而小于1000000,即可確定59319的立方根是2位數(shù);
(2)根據(jù)一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù),據(jù)此即可確定;,即可確定答案;
(3)運用數(shù)立方的計算方法計算即可;
(4)首先根據(jù)一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù)確定個位數(shù),然再確定十位數(shù)即可解答.
解:(1)∵1000<19683<1000000,
∴10<<100,
∴是兩位數(shù);
故答案為:兩;
(2)∵一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù)
∴的個位數(shù)為7;
故答案為7;
(3)∵8<19<27,
∴2<<3,
∴的十位上的數(shù)是2,
故答案為2;
(4)∵觀察發(fā)現(xiàn):只有8的立方的個位數(shù)為2
∴的個位數(shù)為8
又∵64<110<125
∴的十位為4
∴=48
故答案為48.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系上,已知點A(8,4),AB⊥y軸于B,AC⊥x軸于C,直線y=x交AB于D.
(1)直接寫出B、C、D三點坐標;
(2)若E為OD延長線上一動點,記點E橫坐標為a,△BCE的面積為S,求S與a的關(guān)系式;
(3)當S=20時,過點E作EF⊥AB于F,G、H分別為AC、CB上動點,求FG+GH的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB =AC,AD⊥BC于點D,AM是△ABC的外角∠CAE的平分線.
(1)求證:AM∥BC;
(2)若DN平分∠ADC交AM于點N,判斷△ADN的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“摩拜單車”公司調(diào)查無錫市民對其產(chǎn)品的了解情況,隨機抽取部分市民進行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為、、、.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次問卷共隨機調(diào)查了 名市民,扇形統(tǒng)計圖中 .
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中“D類型”所對應(yīng)的圓心角的度數(shù)是 .
(4)從這次接受調(diào)查的市民中隨機抽查一個,恰好是“不了解”的概率是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
(探究展示)
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
(拓展延伸)
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,歡歡一家隨旅游團到某風(fēng)景區(qū)旅游,集體門票的收費標準是: 人以內(nèi)(含 人),每人元;超過人的,超過的部分每人元.
()寫出應(yīng)收門票費(元)與游覽人數(shù)(人)(其中)之間的關(guān)系式.
()利用()中的關(guān)系式計算:若歡歡一家所在的旅游團共人,那么該旅游團購門票共花了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想用鏡子測量一棵松樹的高度,但因樹旁有一條河,不能測量鏡子與樹之間的距離,于是他兩次利用鏡子,如圖所示,第一次他把鏡子放在C點,人在F點時正好在鏡子中看到樹尖A;第二次把鏡子放在D點,人在G點正好看到樹尖A.已知小明的眼睛距離地面1.70m,量得CD=12m,CF=1.8m,DH=3.8m.請你求出松樹的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是以AB為直徑的圓O上一點,直線AC與過B點的切線相交于D,點E是BD的中點,直線CE交直線AB于點F.
(1)求證:CF是⊙O的切線;
(2)若ED=3,EF=5,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com