(2009•永州)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(-1,0)、(0,-),點(diǎn)B在x軸上.已知某二次函數(shù)的圖象經(jīng)過(guò)A、B、C三點(diǎn),且它的對(duì)稱(chēng)軸為直線x=1,點(diǎn)P為直線BC下方的二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與B、C不重合),過(guò)點(diǎn)P作y軸的平行線交BC于點(diǎn)F.
(1)求該二次函數(shù)的解析式;
(2)若設(shè)點(diǎn)P的橫坐標(biāo)為m,用含m的代數(shù)式表示線段PF的長(zhǎng);
(3)求△PBC面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

【答案】分析:此題文字比較多,而且圖象也比較復(fù)雜,所以解題時(shí)需要理解題意.
(1)可以采用待定系數(shù)法求二次函數(shù)的解析式,因?yàn)辄c(diǎn)A(-1,0)、C(0,-)在函數(shù)圖象上,對(duì)稱(chēng)軸為x=1,也可求得A的對(duì)稱(chēng)點(diǎn)B的坐標(biāo)為(3,0),列方程組即可求得解析式;
(2)先求得直線BC的解析式為,則可求得點(diǎn)F的坐標(biāo)為,再求得點(diǎn)P的縱坐標(biāo)為,可得線段PF的長(zhǎng);
(3)利用面積和,△PBC的面積即可求得.
解答:解:(1)設(shè)二次函數(shù)的解析式為y=ax2+bx+c(a≠0,a、b、c為常數(shù)),
由拋物線的對(duì)稱(chēng)性知B點(diǎn)坐標(biāo)為(3,0),
依題意得:,(1分)
解得:,(2分)
∴所求二次函數(shù)的解析式為;(3分)

(2)∵P點(diǎn)的橫坐標(biāo)為m,
∴P點(diǎn)的縱坐標(biāo)為,(4分)
設(shè)直線BC的解析式為y=kx+b(k≠0,k、b是常數(shù)),
依題意,得,
,
故直線BC的解析式為,(5分)
∴點(diǎn)F的坐標(biāo)為,
;(6分)

(3)∵△PBC的面積=,
∴當(dāng)時(shí),△PBC的最大面積為,(8分)
代入
,
∴點(diǎn)P的坐標(biāo)為.(10分)
點(diǎn)評(píng):此題考查了學(xué)生的綜合應(yīng)用能力,要注意數(shù)形結(jié)合,認(rèn)真分析,仔細(xì)識(shí)圖.注意待定系數(shù)法求函數(shù)的解析式,注意函數(shù)交點(diǎn)坐標(biāo)的求法,注意三角形面積的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年3月黑龍江省大慶市第六十三中學(xué)月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•永州)如圖,在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(-3,0),經(jīng)過(guò)A、O兩點(diǎn)作半徑為的⊙C,交y軸的負(fù)半軸于點(diǎn)B.
(1)求B點(diǎn)的坐標(biāo);
(2)過(guò)B點(diǎn)作⊙C的切線交x軸于點(diǎn)D,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2009•永州)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(-1,0)、(0,-),點(diǎn)B在x軸上.已知某二次函數(shù)的圖象經(jīng)過(guò)A、B、C三點(diǎn),且它的對(duì)稱(chēng)軸為直線x=1,點(diǎn)P為直線BC下方的二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與B、C不重合),過(guò)點(diǎn)P作y軸的平行線交BC于點(diǎn)F.
(1)求該二次函數(shù)的解析式;
(2)若設(shè)點(diǎn)P的橫坐標(biāo)為m,用含m的代數(shù)式表示線段PF的長(zhǎng);
(3)求△PBC面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省蕪湖市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2009•永州)如圖,在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(-3,0),經(jīng)過(guò)A、O兩點(diǎn)作半徑為的⊙C,交y軸的負(fù)半軸于點(diǎn)B.
(1)求B點(diǎn)的坐標(biāo);
(2)過(guò)B點(diǎn)作⊙C的切線交x軸于點(diǎn)D,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省永州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•永州)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(-1,0)、(0,-),點(diǎn)B在x軸上.已知某二次函數(shù)的圖象經(jīng)過(guò)A、B、C三點(diǎn),且它的對(duì)稱(chēng)軸為直線x=1,點(diǎn)P為直線BC下方的二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與B、C不重合),過(guò)點(diǎn)P作y軸的平行線交BC于點(diǎn)F.
(1)求該二次函數(shù)的解析式;
(2)若設(shè)點(diǎn)P的橫坐標(biāo)為m,用含m的代數(shù)式表示線段PF的長(zhǎng);
(3)求△PBC面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省永州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•永州)如圖,在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(-3,0),經(jīng)過(guò)A、O兩點(diǎn)作半徑為的⊙C,交y軸的負(fù)半軸于點(diǎn)B.
(1)求B點(diǎn)的坐標(biāo);
(2)過(guò)B點(diǎn)作⊙C的切線交x軸于點(diǎn)D,求直線BD的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案