【題目】如圖,是邊上的高,平分交于點.若,.求和的度數(shù).
【答案】40°,80°.
【解析】
先根據(jù)AD是△ABC的高得出∠ADB=90°,再由三角形內(nèi)角和定理及三角形外角的性質(zhì)可知∠DBE+∠ADB+∠BED=180°,故∠DBE=180°-∠ADB-∠BED=20°.根據(jù)BE平分∠ABC得出∠ABC=2∠DBE=40°.根據(jù)∠BAC+∠ABC+∠C=180°,∠C=60°即可得出結(jié)論.
∵AD是△ABC的高,
∴∠ADB=90°.
又∵∠DBE+∠ADB+∠BED=180°,∠BED=70°,
∴∠DBE=180°-∠ADB-∠BED=20°.
∵BE平分∠ABC,
∴∠ABC=2∠DBE=40°.
又∵∠BAC+∠ABC+∠C=180°,∠C=60°,
∴∠BAC=180°-∠ABC-∠C=80°.
科目:初中數(shù)學 來源: 題型:
【題目】要在一塊長52 m,寬48 m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路,下面分別是小亮和小穎的設(shè)計方案.
小亮設(shè)計的方案如圖①所示,甬路寬度均為x m,剩余的四塊綠地面積共2300 m2.
小穎設(shè)計的方案如圖②所示,BC=HE=x,AB∥CD,HG∥EF,AB⊥EF,∠1=60°.
(1)求小亮設(shè)計方案中甬路的寬度x;
(2)求小穎設(shè)計方案中四塊綠地的總面積.(友情提示:小穎設(shè)計方案中的x與小亮設(shè)計方案中的x取值相同)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了慶祝校園藝術(shù)節(jié),準備購買一批盆花布置校園.已知1盆A種花和2盆B種花一共需13元,2盆A種花和1盆B種花一共需11元.
(1)求1盆A種花和1盒B種花的售價各是多少元?
(2)學校準備購進這兩種盆花共100盆,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2倍,請求出A種盆花的數(shù)量最多是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過原點的一條直線將這八個正方形分成面積相等的兩部分,則該直線的解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+4的圖象與x軸交于A,與y軸交于點B.
(1)求點A,B的坐標并在如圖的坐標系中畫出函數(shù)y=﹣x+4的圖象;
(2)若一次函數(shù)y=kx﹣2的圖象經(jīng)過點A,求它的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x軸,y軸分別交于A(﹣9,0),B(0,6)兩點,過點C(2,0)作直線l與BC垂直,點E在直線l位于x軸上方的部分.
(1)求一次函數(shù)y=kx+b(k≠0)的表達式;
(2)若△ACE的面積為11,求點E的坐標;
(3)當∠CBE=∠ABO時,點E的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為進一步弘揚中華優(yōu)秀傳統(tǒng)文化,某校決定開展以下四項活動:A經(jīng)典古詩文朗誦;B書畫作品鑒賞;C民族樂器表演;D圍棋賽.學校要求學生全員參與,且每人限報一項.九年級(1)班班長根據(jù)本班報名結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:
(1)九年級(1)班的學生人數(shù)是 ;
(2)在扇形統(tǒng)計圖中,B項目所對應的扇形的圓心角度數(shù)是 ;
(3)將條形統(tǒng)計圖補充完整.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量(千克)與銷售單價(元/千克)的函數(shù)關(guān)系如圖所示:
(1)求與的函數(shù)解析式;
(2)求當時銷售西瓜獲得的利潤的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com