【題目】如圖,AB、CD分別與半圓OO切于點A,D,BC切⊙O于點E.若AB=4,CD=9,則⊙O的半徑為( 。
A. 12 B. C. 6 D. 5
【答案】C
【解析】
過B作CD的垂線,設垂足為F;由切線長定理知:BA=BE,CE=CD;即BC=AB+CD;在構建的Rt△BFC中,BC=AB+CD,CF=CD-AB,根據勾股定理即可求出BF即圓的直徑,進而可求出⊙O的半徑
過B作BF⊥CD于F,
∵AB、CD與半圓O切于A、D,
∴∠BAD=∠CDA=∠BFD=90°,
∴四邊形ADFB為矩形,
∴AB=DF,BF=AD,
∵AB=BE=4,CD=CE=9;
∴BC=BE+CE=13;
∵AB、CD與半圓O相切,
∴四邊形ADFB為矩形;
∴CF=CD-FD=9-4=5,
在Rt△BFC中,BF===12,
∴AD=BF=12,
∴⊙O的半徑為6.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點A在y軸上,且點A坐標為(0,4),BC在x軸正半軸上,點C在B點右側,反比例函數(shù)(x>0)的圖象分別交邊AD,CD于E,F,連結BF,已知,BC=k,AE=CF,且S四邊形ABFD=20,則k= _________.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/17/2120855162306560/2123559773659136/STEM/85e8312ee4314e6b84d61ad733d78d14.png]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學思想轉化,把未知轉化為已知.
用“轉化”的數(shù)學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉化”思想求方程的解;
(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】上周六上午點,小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們在一個服務區(qū)休息了半小時,然后直達姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時間(時)之間的函數(shù)圖象,請根據以上信息,解答下列問題:
(1)求直線所對應的函數(shù)關系式;
(2)已知小穎一家出服務區(qū)后,行駛分鐘時,距姥姥家還有千米,問小穎一家當天幾點到達姥姥家?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年5月31日是世界衛(wèi)生組織發(fā)起的第31個“世界無煙日”.重慶育才中學學生處鼓勵學生積極宣傳,并設計調查問卷,以更好地宣傳吸煙的危害,七年級58班數(shù)學興趣小組第一組的5名同學設計了如下調查問卷,隨機調查了部分吸煙人,并將調查結果繪制成統(tǒng)計圖.
根據以上信息,解答下列問題:
(1)E選項所在扇形的圓心角的度數(shù)是 ,并把條形統(tǒng)計圖補充完整.
(2)重慶育才中學七年級58班數(shù)學興趣小組第一組的5名同學中有兩名男同學們,學校學生處準備從七年級58班數(shù)學興趣小組第一組的5名同學中選取兩名同學參加“世界無煙日”活動的總結會,請你用列表法或畫樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=﹣x﹣1與x軸,y軸的交點分別為A、B,以x=﹣1為對稱軸的拋物線y=x2+bx+c與x軸分別交于點A、C,直線x=﹣1與x軸交于點D.
(1)求拋物線的解析式;
(2)在線段AB上是否存在一點P,使以A,D,P為頂點的三角形與△AOB相似?若存在,求出點P的坐標;如果不存在,請說明理由;
(3)若點Q在第三象限內,且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆時針旋轉一定角度后與△ADE重合,且點C恰好成為AD中點,如圖
(1)指出旋轉中心,并求出旋轉角的度數(shù).
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,
(1)求∠B 的度數(shù)和 AB 的長.
(2)求 tan∠CDB 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com